
COMMIT PROCESSING IN DISTRIBUTED DATABASE SYSTEMS AND IN

HETEROGENEOUS MULTIDATABASE SYSTEMS

by

Yousef J. Al-Houmaily

B.S. in Computer and Information Sciences,

King Saud University, Saudi Arabia

M.S. in Computer Science, George Washington University, U.S.A.

Submitted to the Graduate Faculty

of the Graduate School of Engineering

in partial ful�llment of

the requirement for the degree of

Doctor

of

Philosophy

University of Pittsburgh

1997

The author grants permission

to reproduce single copies.

Signed

COMMITTEE SIGNATURE PAGE

This dissertation was presented by

Yousef J. Al-Houmaily

It was defended on

April 16, 1997

and approved by

Panos K. Chrysanthis, Assistant Professor

Committee Co-Chairman

Steven P. Levitan, Associate Professor

Committee Co-Chairman

Sujata Banerjee, Assistant Professor

Committee Member

J. Thomas Cain, Associate Professor

Committee Member

Richard Hall, Associate Professor

Committee Member

Ronald G. Hoelzeman, Associate Professor

Committee Member

ii

Copyright

c

 1997 by Yousef J. Al-Houmaily

All Rights Reserved

iii

ACKNOWLEDGMENTS

I would like to thank the esteemed members of my Ph.D. committee, especially

my two Co-chairmen and academic advisors, Professor Panos K. Chrysanthis and

Professor Steven P. Levitan. I have known both of my advisors for almost six years

now. Despite their busy schedules, both of them have always been available for me

with open doors at all times. Their suggestions, comments and guidance are clearly

re
ected in the contents of this document. I greatly thank both of them for sharing

with me their time and knowledge. I would also like to express my deep gratitude

to Professor Chrysanthis for teaching me the basics of databases, persuading me to

seek a career in this ever evolving area of research, and promoting excellence in my

research.

I would like also to thank the other four members of my dissertation commit-

tee: Professor Sujata Banerjee, Professor J. Thomas Cain, Professor Richard Hall

and Professor Ronald G. Hoelzeman, for their interest in my Ph.D. work and their

constructive comments and suggestions.

I thank my colleagues Robert Conticello, Fahad Hoymany, Jae Oh and Gary

Walborn for the good times and inspiring discussions. I would also like to thank Rob

for his great help in my simulation studies.

I gratefully acknowledge the government of my home country, The Kingdom of

Saudi Arabia, for its support through a Graduate Student Scholarship as well as the

National Science Foundation for a research assistantship under grants IRI-9210588

and IRI-95020091.

iv

ABSTRACT

Signature

Panos K. Chrysanthis

Signature

Steven P. Levitan

COMMIT PROCESSING IN DISTRIBUTED DATABASE SYSTEMS

AND IN HETEROGENEOUS MULTIDATABASE SYSTEMS

Yousef J. Al-Houmaily, Ph.D.

University of Pittsburgh

The focus of this dissertation is on performance of atomic commit protocols in

distributed database systems (DDBSs) and on compatibility of atomic commit proto-

cols in heterogeneous, multidatabase systems (MDBSs). This dissertation o�ers four

major contributions, three of which are in the context of DDBSs while the fourth is

in the context of MDBSs. Speci�cally, its �rst contribution are two highly e�cient

atomic commit protocols in DDBSs, called the implicit yes-vote (IYV) and implicit

yes-vote with a commit coordinator (IYV-WCC) which exploit the characteristics of

future gigabit-networked database systems, assuming di�erent degrees of site relia-

bility.

The second contribution is the performance evaluation of IYV and four other well

known two-phase commit variants based on a simulation system. This includes the

v

performance gains when read-only optimizations are used. The simulation study,

explicitly models (1) the propagation latency of the communication network, (2) the

overhead of the management of the database bu�er and of
ushing the transaction

and protocol execution log records and (3) the overhead of recovery from site failures.

The third contribution in DDBSs are two new presumed commit two-phase com-

mit variants for the multi-level transaction execution model and a new read-only op-

timization called the unsolicited update-vote (UUV). The two new presumed commit

variants signi�cantly reduce the overhead of the original presumed commit protocol

and, when combined with UUV optimization, they nullify the classical argument that

solely favors the presumed abort protocol.

The last contribution is the characterization of the concept of a safe state with re-

spect to the commitment of transactions and its application in the context of MDBSs

through the development of a new atomic commit protocol called the presumed any

(PrAny). PrAny interoperates the basic two-phase commit protocol and its most

commonly known two variants, namely, the presumed abort and the presumed com-

mit protocols, despite the con
icting presumptions about the outcome of terminated

transactions and without violating the autonomy of the constituent sites.

DESCRIPTORS

Atomic Commit Protocols Database Systems

Distributed Database Systems Multidatabase Systems

Transaction Management Two-phase Commit Protocol

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS : iv

ABSTRACT : v

LIST OF FIGURES : xii

LIST OF TABLES : xiv

1.0 INTRODUCTION AND MOTIVATION : : : : : : : : : : : : : : : : : : 1

2.0 DATABASE SYSTEM FUNDAMENTALS : : : : : : : : : : : : : : : : : 7

2.1 Transactions : 7

2.2 Database Consistency and Concurrent Transactions : : : : : : : : : 8

2.2.1 Concurrency Control Protocols : : : : : : : : : : : : : : : : : 9

2.2.2 Recovery Protocols : 11

2.3 Summary : 14

3.0 RELATED WORK : 15

3.1 Distributed Database Systems: A Taxonomy : : : : : : : : : : : : : 15

3.2 Atomic Commitment in Distributed Database Systems : : : : : : : : 19

3.2.1 The Basic Two-Phase Commit Protocol : : : : : : : : : : : : 20

3.2.1.1 Description of the Basic Two-Phase Commit Protocol 20

3.2.1.2 Recovery in Two-Phase Commit Protocol : : : : : : : 22

3.2.2 The Presumed Abort (PrA) Protocol : : : : : : : : : : : : : : 24

3.2.3 The Presumed Commit (PrC) Protocol : : : : : : : : : : : : : 25

3.2.4 The New Presumed Commit Protocol : : : : : : : : : : : : : : 27

3.2.5 Other Two-Phase Commit Variants : : : : : : : : : : : : : : : 29

3.2.6 Other Atomic Commit Protocols : : : : : : : : : : : : : : : : 33

3.2.7 Atomic Commit Protocol Optimizations : : : : : : : : : : : : 35

3.2.8 Performance Evaluation of Atomic Commit Protocols : : : : : 37

vii

3.2.8.1 Basic Performance Evaluation : : : : : : : : : : : : : 38

3.2.8.2 Advanced Performance Evaluations : : : : : : : : : : 40

3.3 Atomic Commitment in Heterogeneous Multidatabase Systems : : : 41

3.3.1 Externalized Atomic Commit Protocols : : : : : : : : : : : : : 43

3.3.2 Non-Externalized Atomic Commit Protocols : : : : : : : : : : 46

3.3.2.1 Modify Component Local Database Management

Systems : 47

3.3.2.2 Prepared State Emulation : : : : : : : : : : : : : : : 48

3.3.3 Uni�ed Atomic Commit Protocols : : : : : : : : : : : : : : : : 49

3.4 Summary : 50

4.0 THE IMPLICIT YES-VOTE COMMIT PROTOCOL : : : : : : : : : : : 51

4.1 The Implicit Yes-Vote (IYV) Protocol : : : : : : : : : : : : : : : : : 53

4.1.1 Description of IYV Protocol : : : : : : : : : : : : : : : : : : : 53

4.1.2 Recovery in IYV Protocol : 56

4.1.2.1 Communication Failures : : : : : : : : : : : : : : : : 56

4.1.2.2 Site Failures : 57

4.2 The IYV with a Commit Coordinator (IYV-WCC) Protocol : : : : : 62

4.2.1 Description of IYV{WCC Protocol : : : : : : : : : : : : : : : 63

4.2.2 Recovery in IYV{WCC : 66

4.2.2.1 Communication Failures : : : : : : : : : : : : : : : : 66

4.2.2.2 Participant Failure : 69

4.2.2.3 Coordinator Failure : : : : : : : : : : : : : : : : : : : 73

4.3 Correctness of IYV Protocol Assumptions : : : : : : : : : : : : : : : 73

4.4 Comparison between IYV Protocol and the other Atomic Commit

Protocols : 77

4.5 Analytical Evaluation : 80

4.6 Summary : 89

viii

5.0 PERFORMANCE OF ATOMIC COMMIT PROTOCOLS IN GIGABIT-

NETWORKED DATABASE SYSTEMS : : : : : : : : : : : : : : : : : : 91

5.1 Simulation System : 93

5.1.1 Simulation System Model : 93

5.1.2 Transactions and their Execution Model : : : : : : : : : : : : 97

5.1.3 Workload Model : 98

5.2 Performance of Atomic Commit Protocols (ACPs) During Normal

Processing : 99

5.2.1 Experiment 1: How do ACPs perform with long transactions? 101

5.2.2 Experiment 2: How do ACPs perform with short transactions? 103

5.2.3 Experiment 3: How do ACPs perform with long, read-only

transactions? : 105

5.2.4 Experiment 4: How do ACPs perform with short, read-only

transactions? : 107

5.2.5 Experiment 5: How do read-only optimizations a�ect the

performance of ACPs for long transactions? : : : : : : : : : : 108

5.2.6 Experiment 6: How do read-only optimizations a�ect the

performance of ACPs for short transactions? : : : : : : : : : : 109

5.3 Performance of ACPs in Case of Failures : : : : : : : : : : : : : : : 110

5.3.1 Experiment 7: How do single failures a�ect the performance of

ACPs in case of long transactions? : : : : : : : : : : : : : : : 111

5.3.2 Experiment 8: How do single failures a�ect the performance of

ACPs in case of short transactions? : : : : : : : : : : : : : : : 111

5.3.3 Experiment 9: How well can IYV perform in the case of

simultaneous failures? : 113

5.4 Summary of Results : 114

ix

6.0 AN ARGUMENT IN FAVOR OF PRESUMED COMMIT PROTOCOL 116

6.1 Multi-Level Presumed Abort and Presumed Commit Protocols : : : 117

6.1.1 Description of Multi-Level Presumed Abort and Presumed

Commit Protocols : 118

6.1.2 Recovery in Multi-Level Presumed Abort and Presumed

Commit Protocols : 120

6.2 Evaluating Multi-Level Presumed Abort and Presumed Commit

Protocols : 122

6.3 The Rooted Presumed Commit (RPrC) Protocol : : : : : : : : : : : 124

6.3.1 Description of the RPrC Protocol : : : : : : : : : : : : : : : : 124

6.3.2 Recovery in RPrC Protocol : : : : : : : : : : : : : : : : : : : 127

6.4 The Re-Structured Presumed Commit (ReSPrC) Protocol : : : : : : 128

6.5 Evaluation of RPrC and ReSPrC Protocols : : : : : : : : : : : : : : 130

6.6 The Unsolicited Update-Vote Optimization (UUV) : : : : : : : : : : 132

6.6.1 Description of UUV Optimization : : : : : : : : : : : : : : : : 133

6.6.2 Other Methods : 135

6.7 Applying UUV to Presumed Commit Protocol variants : : : : : : : 136

6.7.1 UUV with Presumed Commit Protocol : : : : : : : : : : : : : 136

6.7.2 UUV with Multi-Level Presumed Commit Protocol Variants : 137

6.8 Summary : 138

7.0 DEALINGWITH INCOMPATIBLEPRESUMPTIONSOF TWO-PHASE

COMMIT PROTOCOLS : 140

7.1 Compatibility of Two-Phase Commit Protocol Variants : : : : : : : 141

7.2 Operational Correctness : 144

7.3 The Presumed Any (PrAny) Protocol : : : : : : : : : : : : : : : : : 148

7.3.1 Description of the PrAny Protocol : : : : : : : : : : : : : : : 148

7.3.2 Recovery in the PrAny Protocol : : : : : : : : : : : : : : : : : 151

7.3.3 Proof of Correctness : 153

x

7.4 Summary : 154

8.0 SUMMARY AND CONCLUSIONS : 156

8.1 Summary : 156

8.2 Future Work : 161

8.3 Conclusions : 163

BIBLIOGRAPHY : 165

xi

LIST OF FIGURES

Figure No. Page

1 Taxonomy of distributed database systems. : : : : : : : : : : : : : : : 16

2 A distributed database environment. : : : : : : : : : : : : : : : : : : 17

3 Signi�cant steps in the evolution of ACPs. : : : : : : : : : : : : : : : 19

4 The basic two-phase commit protocol. : : : : : : : : : : : : : : : : : 21

5 The presumed abort 2PC protocol (abort case). : : : : : : : : : : : : 24

6 The presumed commit 2PC protocol. : : : : : : : : : : : : : : : : : : 26

7 RECT and PIT in NPrC. : 28

8 The MDBS model. : 42

9 Taxonomy of atomic commitment in MDBSs. : : : : : : : : : : : : : 43

10 The IYV coordination messages and log writes. : : : : : : : : : : : : 54

11 Recovery in IYV Protocol. : 58

12 The coordination messages and log writes in IYV-WCC. : : : : : : : 65

13 The sequence of coordination messages and forced log writes required

during normal processing. : 82

14 The amount of time required to become operational after a failure. : : 88

15 The performance of ACPs for long update transactions. : : : : : : : : 102

16 The performance of ACPs for short update transactions. : : : : : : : 104

17 The performance of ACPs with long 70% read-only transactions. : : : 106

18 The performance of ACPs with short 70% read-only transactions. : : 107

19 The performance of ACPs for long transactions with read-only

optimizations. : 109

20 The performance of ACPs for short transactions with read-only

optimizations. : 110

21 Single failures for long transactions. : : : : : : : : : : : : : : : : : : : 112

xii

22 Single failures for short transactions. : : : : : : : : : : : : : : : : : : 112

23 Simultaneous failures for short transactions. : : : : : : : : : : : : : : 114

24 Multi-level PrA. : 119

25 Multi-level PrC. : 121

26 The rooted presumed commit (RPrC) protocol. : : : : : : : : : : : : 126

27 The union two-phase commit protocol (u2PC(PrC)). : : : : : : : : : 142

28 The presumed any protocol. : 150

29 Our contributions in the evolution of ACPs. : : : : : : : : : : : : : : 157

xiii

LIST OF TABLES

Table No. Page

1 The costs associated with update transactions in 2PC and its two

common variants. : 39

2 Cost of read-only transactions using the traditional read-only

optimization. : 40

3 Responses to a communication failure. : : : : : : : : : : : : : : : : : 68

4 Responses to a site failure. : 70

5 Committing a transaction assuming the worst case scenario. : : : : : 83

6 Aborting a transaction assuming the worst case scenario. : : : : : : : 83

7 Committing a transaction assuming the ideal case scenario. : : : : : : 85

8 Aborting a transaction assuming the ideal case scenario. : : : : : : : 85

9 Simulation parameters. : 94

10 Simulation parameters for the non-failure case. : : : : : : : : : : : : : 100

11 Non-failure experiments. : 101

12 The costs associated with multi-level PrA, multi-level PrC, RPrC and

ReSPrC protocols. : 131

xiv

1

1.0 INTRODUCTION AND MOTIVATION

Current advances in computer and network technologies enable an entirely new

class of advanced applications which manage vast amounts of data. These applica-

tions will be distributed over di�erent computing systems that are interconnected

via high-speed communication networks and will access data objects stored at dif-

ferent database sites. Collaborative computer-aided design applications, biomedical

databases, world trading and banking, multimedia information systems, are few ex-

amples from a long list of such advanced database applications. These applications

will typically use transactional support due to the abstract correctness properties of

transactions. Transactions provide application programmers with a high level system

interface that hides both the e�ects of concurrency among the di�erent activities in

the system and the presence of failures. At the same time, transactions guarantee

data consistency and database integrity despite concurrent data sharing and system

failures.

In a traditional transactional database system, a database management system

(DBMS) is employed to provide uniform access to the data objects stored in the

database and to ensure their consistency by means of transactions. That is, applica-

tion programs and users access the data (in the database) by submitting transactions

to the DBMS. In a distributed database system (DDBS), the data objects are stored

at multiple sites that are interconnected via a communication network. Access to the

data objects in a DDBS is governed by a distributed database management system

(DDBMS) which executes each transaction in a distributed fashion at di�erent sites

based on the location of the data objects that the transaction requires to access.

Since site and communication failures are possible, transactions might end up

partially executed, producing unpredictable results that violate data consistency.

Hence, for a distributed transaction that executes across multiple sites, the sites

need to agree about when and how the transaction should terminate to avoid any

2

inconsistencies. That is, all the sites participating in a transaction execution need to

(1) eventually reach an agreement; and (2) all agree on a binary value that is either

to commit the transaction making all its e�ects persistent, or to abort the transaction

obliterating all its e�ects as if the transaction has never executed. A protocol that

achieves this kind of agreement is called an atomic commit protocol (ACP) and is

used to realize atomicity which is one of the abstract properties of transactions. By

using an ACP, a distributed transaction always produces results that preserve data

consistency despite site and communication failures.

The two-phase commit protocol (2PC)

(1; 2)�

is the simplest and most used

ACP. The performance of 2PC as well as other ACPs is measured using three met-

rics

(3; 4; 5)

. The �rst metric is message complexity which deals with the number of

messages that are needed to be exchanged between the systems participating in the

execution of a transaction to reach a consistent decision regarding the �nal status of

the transaction. The second metric is log complexity which accounts for the amount

of information that needs to be recorded at each participant site in order to achieve

resiliency to failures. The third metric is time complexity which corresponds to the

number of rounds of messages that are required in order to reach a decision. Using

today's technology, a disk access requires 20 milliseconds whereas the propagation la-

tency of a message from one site to another is typically 50 milliseconds in high-speed

wide-area networks. These costs do not take into consideration the queuing delays

over the CPUs and disks, which are much higher than these basic costs especially

in high-volume transactional systems and, generally, is on the order of hundreds of

milliseconds. Hence, eliminating the need for a disk access or a message from the

commit processing of transactions, greatly reduces queuing delays and congestion

over the system resources including contention over the data objects that are stored

in a database. In fact, it has been the goal of all 2PC variants proposed in the liter-

ature

(6; 7; 8; 9)

, to reduce the cost of 2PC which consumes a substantial amount of

a transaction's execution time during normal processing

(10)

. For example, the most

notable 2PC variants, namely, presumed abort (PrA) and presumed commit (PrC),

reduce the message complexity of 2PC by eliminating a single message from each

participant site for aborting and committing transactions, respectively.

�

Parenthetical references placed superior to the line of text refer to the bibliography.

3

Existing ACPs are not expected to scale well in future distributed database

environments and applications for three reasons. First, although some ACPs are

designed to support di�erent communication topologies

(1; 11; 12)

, in general they

do not exploit the semantics of the underlying database management mechanisms

and the characteristics of the distributed environment to improve their performance.

Semantics-based techniques have been successfully applied to enhance the perfor-

mance of database systems in the context of concurrency control and recovery pro-

tocols, e.g.,

(13; 14; 15; 16; 17)

. Second, existing protocols are designed for either

highly reliable or failure-prone environments which make them non-adaptive to the

changes in the behavior of transactions and the distributed environment. Finally, in

the presence of a failure, all ACPs are designed to abort a transaction if the sites

participating in the execution of the transaction have not reached an agreement to

commit the transaction by the time of the failure. Since transactions in advanced

applications are expected to be long-executing, aborting a transaction due to a par-

tial failure and re-submitting it again after the failure is �xed leads to unnecessary

waste of computing resources.

Existing protocols are also not compatible with each other and therefore cannot

be integrated in a straight forward manner in (heterogeneous) multidatabase systems

(MDBSs). A MDBS interoperates pre-existing database sites that are supporting

their own applications and users, preserving their autonomy. That is, joining in

a MDBS (ideally) does not require any changes to existing database management

systems and applications. The incompatibility of ACPs arises due to the di�erences

in the semantics of the coordination messages and actions that are taken during the

course of the execution of the di�erent protocols.

This dissertation addresses two issues making ACPs scalable for future database

systems. The �rst issue deals with the performance of ACPs

2

in DDBSs while the

other issue deals with compatibility of ACPs in (heterogeneous) multidatabase systems

(MDBSs). It o�ers four major contributions, three of which are in the context of

DDBSs while the fourth is in the context of MDBSs.

2

In other words, the ACPs implications on system performance.

4

The �rst contribution in DDBSs is the development of two highly e�cient ACPs

called the implicit yes-vote (IYV) and the implicit yes-vote with a commit coordi-

nator (IYV-WCC) protocols with di�erent assumptions about the reliability of the

database sites. Both protocols enhance performance over the current ACPs by ex-

ploiting (1) the characteristics of high speed networks and (2) the underling database

management mechanisms to achieve low message, log and time complexities. The

two protocols also supports our notion of forward recovery in which we allow par-

tially executed transactions that are still executing in the system, after a participant

site failure has occurred and has been �xed, to continue their execution on the failed

participant, without having to abort them.

The second contribution in DDBSs is the performance evaluation of IYV and four

other atomic commit protocols based on a simulation system under the assumption

that they always succeed in committing a transaction. In our study, we also evaluate

the performance gain when read-only optimizations are used. In contrast to other re-

cent comparative performance evaluations of two-phase commit variants in local area

networks

(18; 19)

, in our simulation study, we explicitly model (1) the propagation

latency of the communication network, (2) the overhead of the management of the

database bu�er and of
ushing the transaction and protocol execution log records

and (3) the overhead of recovery from site failures. By factoring in the overhead asso-

ciated with these aspects, our simulation results capture more accurately the relative

performance of the evaluated protocols as well as the magnitude in their performance

di�erences.

The third contribution in DDBSs is the introduction of two new presumed commit

2PC protocol variants, called the rooted presumed commit and re-structured presumed

commit, and a new read-only optimization, called the unsolicited update-vote. The

two new presumed commit variants are proposed in the context of the multi-level

transaction execution model, which is the model adopted by the distributed transac-

tion processing standards and implemented in commercial database systems, which

signi�cantly reduce the log complexities of the original PrC and consequently the

cost of commit processing in this model. The unsolicited update-vote reduces the

cost of commit processing associated with read-only participants when compared

5

to the traditional read-only optimization

(3; 4)

. In conjunction with the unsolicited

update-vote, the two new variants nullify the argument that solely favors the pre-

sumed abort 2PC protocol, the current choice of distributed transaction processing

standards

(20; 21)

, and argues in favor of presumed commit to become part of current

database standardization e�orts.

In terms of compatibility of ACPs, the fourth contribution is the characterization

of the concept of a safe state with respect to committing transactions. This concept

de�nes when it is possible to interoperate database sites that employ di�erent and

incompatible ACPs in a practical manner. This is especially important in the context

of MDBSs. Based on the safe state concept, we develop a MDBS commit protocol

called the presumed any (PrAny). PrAny successfully interoperates the 2PC, PrA

and PrC protocols in a practical manner without violating the autonomy of the

constituent database site, a necessary requirement in MDBSs. This is in spite of the

con
icting presumptions about the outcome of terminated transactions in any of the

three two-phase commit variants.

Road Map

This dissertation consists of three parts. Part I provides some background mate-

rial for database management systems and includes Chapters 2 and 3. In Chapter 2,

we discuss database system fundamentals to set the stage for the discussion of the

contributions of this dissertation. Speci�cally, we de�ne the transaction model that

will be used in this dissertation and the properties of transactions. Then, we discuss

some of the traditional techniques that are commonly used to ensure the consistency

of data. In Chapter 3, we �rst present a taxonomy of distributed database systems.

After classifying the di�erent database systems, we discuss the protocols that have

been proposed in the literature for each of the two distributed environments under

consideration.

Part II focuses on the performance of atomic commit protocols in DDBSs and

consists of Chapters 4, 5 and 6. In Chapter 4, we present IYV and IYV-WCC. We

also thoroughly discuss the motivation behind their design as well as their behavior

6

during normal processing and in the case of failures. Furthermore, we evaluate the

performance of our two protocols and compare it with the performance of some

of the protocols that we discuss in Chapter 3 based on the traditional analytical

method. In Chapter 5, we evaluate the performance of IYV and four other ACPs with

respect to transaction throughput using simulation. We also evaluate the performance

gain when read-only optimizations are used. In Chapter 6, we present the two new

presumed commit variants and the unsolicited update-vote optimization. Based on

these results, we argue in favor of presumed commit to become part of the current

distributed database standards.

Finally, Part III focuses on interoperability and consists of Chapter 7 in which we

present our safety criterion and the presumed any protocol.

We conclude this dissertation with Chapter 8 in which we summarize the con-

tributions of this dissertation and discuss some of our expected future work in the

context of ACPs.

7

2.0 DATABASE SYSTEM FUNDAMENTALS

In this chapter, we review fundamental concepts and techniques of database tech-

nology to set the stage for the rest of this dissertation. Speci�cally, we will discuss

traditional concurrency control and recovery techniques that are used by database

management systems (DBMSs) to ensure the consistency of the databases that they

manage.

In the next section, we de�ne the concept of transactions and in section 2.2, we

discuss the traditional properties of transactions. To guarantee the properties of

transactions, a database management system combines two protocols, a concurrency

control protocol and a recovery protocol which in the case of distributed transactions

also includes an atomic commit protocol. Hence, in section 2.2.1, we review some

concurrency control protocols, emphasizing the most commonly implemented one in

the industry while in Section 2.2.2, we review recovery protocols, also emphasizing

the most commonly used one. The atomic commit protocols will be examined in the

related work chapter (Chapter 3).

2.1 Transactions

A transaction is a program segment that is written in a high level language to

manipulate a shared database. Regardless of the type of the language used to ex-

press transactions, each transaction is translated into a set of data operations and

transaction management primitives. The data objects stored in the database are ma-

nipulated by data operations which are referred to as operation events. Transaction

management primitives, on the other hand, are termed signi�cant events and used

for the management of the database.

8

In the traditional transaction model, transactions are atomic. That is, each trans-

action is executed as a single logical unit where all its e�ects are either re
ected in

the state of the database or not at all. In this model, a transaction is a partial order

set of events that starts by invoking a Begin signi�cant event to indicate the start of

the transaction. The Begin event is followed by a sequence of operation events. For

example, operation events can be a Read or a Write operation on a data item. When

a transaction invokes a Read operation on an object it retrieves the state (i.e., the

value) of the data object whereas, when the transaction invokes a Write operation

on the object, it updates the state of the object.

When a transaction �nishes its execution, it invokes a signi�cant event that is

either a Commit or an Abort to indicate its intention to install the changes that it

has made in the state of the database. If the event is a Commit, it means that the

transaction wants to install all its e�ects in the state of the database, whereas, if the

event is an Abort, it means that the transaction requests to cancel (i.e., rollback) it

e�ects from the state of the database.

2.2 Database Consistency and Concurrent Transactions

To maximize transaction throughput and resource utilization in database systems,

transactions are executed concurrently allowing them to interleave their operations

on the database. Since the concurrent execution of transactions may cause them

to interfere with each other over the data objects, database consistency might be

violated. Database consistency might be also violated in the case of failures because

transactions might end up partially executed, producing unpredictable results. As

an example, consider a fund transfer transaction that fails after it debits one account

and before it credits another one. In this example, the total credit in the two accounts

becomes invalid after the transaction failure. Failures could be due to software, such

as an operating system failure, or hardware, such as a power outage.

In traditional centralized database systems, database inconsistencies that are due

to failures and concurrency are prevented by satisfying the, commonly known, ACID

9

properties

(1; 22; 23)

, which are associated with transactions. The ACID properties

are: (1) Atomicity, (2) Consistency, (3) Isolation and (4) Durability. Atomicity en-

sures that, regardless of failures, all the operations of a transaction are treated as

a single, indivisible, atomic unit that is either is performed when the transaction

commits (i.e., �nishes its execution successfully) or not at all when the transaction

aborts (i.e., fails). Consistency is a requirement that is placed on transactions in the

sense that each transaction is a computation that maintains the database consistency

constraints. Isolation allows transactions to execute concurrently in the system with-

out violating the consistency of the database. Durability ensures that the e�ects of

committed transactions are made permanent on the state of the database, surviving

any subsequent failures.

The ACID properties are usually ensured by combining two sets of algorithms.

The �rst set ensures the isolation property and are referred to as concurrency control

protocols, whereas the second set ensures the atomicity and durability properties and

are referred to as recovery protocols. The consistency property is, commonly, ensured

by designing transactions such that each one of them preserves the consistency of the

database within its boundaries.

Now, let us review some concurrency control protocols and the governing criterion

that captures their correctness.

2.2.1 Concurrency Control Protocols

Serializability

(5)

is the traditional correctness criterion that is used to reason

about the correctness of concurrency control protocols. Since each transaction pre-

serves the consistency of the database across its boundaries, serializability states

that the concurrent execution of a set of transactions is correct if the execution is

equivalent to some serial execution. An execution is serial if a set of transactions

are executed, to their completion, one after the other. Hence, such a concurrent

execution of transactions is called serializable and satis�es the isolation property.

10

Con
ict serializability

(5)

is the criterion that is used in all commercial database

systems for practical reasons. In this criterion, two operations that are to be per-

formed on the same data object are said to be in con
ict if they belong to two di�erent

transactions and one of the operations is a Write operation. This is because a Write

operation a�ects the execution order of the two operations

(24; 25; 26)

. Otherwise,

the two operations commute and can be executed in any order. Testing whether

an execution is con
ict serializable or not is achieved by checking the cyclicity of a

precedence graph called serialization graph.

There are many concurrency control protocols proposed in the literature that re-

alize con
ict serializability, such as timestamp ordering and serialization graph test-

ing

(5)

. In general, depending on how a protocol is implemented, it can be regarded

as pessimistic or optimistic. In a pessimistic implementation, a transaction does

not access a data item unless it is guaranteed to be serializable. In an optimistic

implementation, transactions access to data objects is not coordinated during their

execution, but at commit time, they are validated with respect to their serializability.

The most widely used concurrency control protocol that realizes con
ict serializ-

ability is a pessimistic implementation of a protocol called two-phase locking protocol

(2PL)

(25)

. 2PL is characterized by its simplicity and ease of implementation. In

2PL, each transaction goes through a growing phase and a shrinking phase. During

the growing phase, a transaction has to acquire a lock on each data object it wishes to

access prior to accessing it. During the shrinking phase, a transaction starts releasing

the locks that it has acquired during its growing phase and it is not allowed to acquire

any more locks. If a transaction requests a lock on a data object and the lock cannot

be granted because another transaction is holding a con
icting lock on the same data

object, the requesting transaction is forced to wait until the lock is released. Since

2PL is susceptible to deadlocks

(27)

, a deadlock detection or prevention algorithm is

usually coupled with any 2PL implementation

(5)

.

In commercial database management systems, a variant of 2PL protocol called

strict two-phase locking (S2PL) is actually implemented. In S2PL, the locks held by

a transaction T

i

are not released until the transaction is either committed or aborted.

11

Hence, a transaction T

j

can not observe the partial e�ects of T

i

and, therefore, T

j

cannot be aborted as a side e�ect if T

i

aborts. This situation is commonly referred

to as avoiding cascading aborts

(5)

. Furthermore, S2PL prevents the updates of T

i

from being overwritten by T

j

until T

i

is committed or aborted. Thus, S2PL does not

only ensure serializability, from the concurrency point of view, but it also simpli�es

the implementation of recovery protocols that we discuss the next section.

2.2.2 Recovery Protocols

For performance reasons, portions of the stable database, that is kept on a stable

(i.e., non-volatile) storage which is usually a disk, are brought into the database bu�er

in main memory based on the data requirements of transactions. After a site failure,

these portions are lost and the state of the stable database might not re
ect the state

of entire database which also includes the state of the database bu�er as it was prior

to the failure. The state of the database might be left in an inconsistent state because

not all the e�ects of committed transactions are guaranteed to have been propagated

to the stable database. Similarly, there is no guarantee that none of the e�ects of

aborted transactions were propagated to the stable database. Hence, this violates

both the atomicity and durability properties of transactions.

The goal of a recovery protocol is to ensure that (1) all the e�ects of committed

transactions persist on the stable state of the database and (2) not any of the e�ects of

aborted transactions are re
ected on the state of the stable database, despite failures.

Recovery protocols are usually implemented by supporting two basic actions that are

performed on the state of the stable database, namely, the undo action and the redo

action. The undo action, which is required for atomicity, undoes the e�ects of aborted

transactions from the state of the database. The redo action which is required for

durability, redoes the e�ects of committed transactions on the state of the database.

The information needed for the undo and redo actions is kept in a log (which is also

called a journal).

12

A log can be physical or logical and is is stored as a sequential �le in main memory.

The log is forced-written (i.e.,
ushed) into stable storage when it runs out of main

memory space, periodically or when an event occurs that has to be remembered in

the case of a system failure. The commitment of a transaction is such an event. Each

log record can be identi�ed by its log sequence number (LSN) that is assigned to the

records in an increasing order. In the case of a physical log, for each operation that

modi�es the state of a data object, the old state as well as the new state of the object

are recorded in the log. The old state of an object, called the before image, is used

by the undo action while, the new state of the object, called the after image, is used

by the redo action. In case of a logical log, on the other hand, the log contains a high

level description of the executed operation and its parameters.

To ensure that the log contains all necessary information for recovery, the updates

of a transaction are not applied on the state of the database until after the log

records corresponding to the updates are in stable storage, and the commitment of

the transaction is not acknowledged until after all its log records are in stable storage.

The former is known as the undo rule, whereas the latter is known as the redo rule.

If the propagation of the e�ects of transactions to the stable database is restricted,

there is no need to perform either the undo or the redo actions. Thus, the need for

either of the two actions depends on the management of the page replacement of the

database bu�er. If the updates of uncommitted transactions stored in the database

bu�er are not allowed to be moved to the stable database before transactions are

committed, the undo action is not required. On the other hand, if the updates of

committed transactions are propagated to the stable database before acknowledg-

ing the transactions' commitments, the redo action is not required. Depending on

whether a recovery protocol requires the undo action, redo action or both actions,

there are four types of recovery protocols, namely, Undo/Redo, Undo/No-Redo, No-

Undo/Redo, No-Undo/No-Redo.

TheUndo/Redo recovery protocol, commonly known as write-ahead logging (WAL),

requires both undo and redo actions. In WAL, swapping into (from) the database

bu�er from (into) the stable database is not constrained by the commit point of

13

transactions. This
exibility in the management of the database bu�er maximizes

e�ciency during normal operation by increasing the degree of multi-programming

at the expense of a less e�cient recovery processing when compared to the other

recovery protocols that do not require undo or redo. For this reason, WAL is the one

used by commercial systems.

At this point, let us sketch how recovery is performed after a system failure

assuming WAL and S2PL. After a system crash, the entire log is scanned in an

analysis phase to determine which transactions have committed without having all

their e�ects re
ected in the state of the stable database and which transactions have

aborted with some of their e�ects already re
ected in the state of the stable database.

After analysis, the required undo and redo actions are performed in two sequential

phases, namely the undo phase and the redo phase. Depending on which phase

precedes the other, there are two types of crash recovery protocols: The �rst one is

Undo-Redo in which the undo phase precedes the redo phase

(5)

, and the second one

is Redo-Undo in which the redo phase precedes the undo phase

(28)

. According to the

LSNs recorded in the log, during the redo phase, the redo actions are performed in

an increasing order while, during the undo phase, the undo actions are performed in

a decreasing order. This recovery procedure guarantees that the e�ects of committed

transactions are installed on the data objects in the same sequence as they were

executed prior to the failure. It also ensures that the �nal state of each data object

re
ects the e�ect of the last committed transaction that has accessed the data object

but not any of the aborted transactions.

Over time, the log that is used for recovery might grow substantially large which

adversely a�ects the cost of recovery after a failure. In addition, the log might

grow to a point where it might be impossible to store it in the stable storage due

to the latter's limited space. Hence, a number of methods called checkpointing

(5)

have been proposed to alleviate both problems. The theme behind checkpointing

methods is to periodically and their e�ects have been re
ected in the state of the

stable database, and which transactions have been aborted and their e�ects have

been obliterated from the state of the stable database. In this way, from checkpoint

marks, a recovery protocol infers from which point it should start the recovery process

14

and which transactions it should consider. Thus, reducing the cost of recovery after

a failure and, at the same time, limiting the size of the log that needs to be kept in

stable storage.

2.3 Summary

In this chapter, we brie
y reviewed fundamental database techniques to set the

stage for the rest of this dissertation. We have de�ned the traditional notion of trans-

actions that we will be using in this dissertation and their ACID (i.e., Atomicity,

Consistency, Isolation and Durability) properties. To guarantee the ACID properties

of transactions, a database management system combines a concurrency control pro-

tocol and a recovery protocol. The concurrency control protocol ensures the isolation

property of transactions whereas the recovery protocol ensures the atomicity and

durability properties. In the case of distributed transactions, the atomicity property

is ensured using an atomic commit protocol which is the focus of this dissertation

that we discuss in the next chapter.

15

3.0 RELATED WORK

Ensuring the atomicity property of transactions is harder in a distributed database

environment than in a centralized database environment because it has to be guar-

anteed across multiple sites. In this chapter, we review the most commonly known

atomic commit protocols that can be used to realize the atomicity of transactions. Be-

fore we review the di�erent atomic commit protocols, we �rst discuss the di�erences

between homogeneous, heterogeneous and multidatabase systems. Then, in Section

3.2, we overview the major protocols and optimizations that have been proposed in

the literature in the context of homogeneous distributed database systems. In Sec-

tion 3.3, we overview the methods that have been proposed to ensure the atomicity

of transactions, in the context of heterogeneous multidatabase systems.

3.1 Distributed Database Systems: A Taxonomy

A distributed database system (DDBS) is a collection of database sites that are

interconnected via a communication network. The data objects in a DDBS might be

stored as disjoint partitions at di�erent sites, replicated across sites or a combina-

tion of both. Individual database sites are responsible for the management of their

databases while the control and coordination of transaction processing that ensure

global data consistency can be either centralized or distributed.

As shown in Figure 1, we classify the di�erent DDBSs based on three dimensions.

These dimensions are: (1) locality of control, (2) degree of integration and (3) degree of

heterogeneity. In a centralized control DDBS, only a particular site is responsible for

the consistency of the distributed data by controlling and coordinating the transaction

processing activities across the di�erent sites. On the other hand, in a distributed

control DDBS, the di�erent sites share the responsibility of control over the execution

16

Distributed Control

(DDBSs)
Distributed Database Systems

Centralized Control

(Commonly refered to as DDBSs)
Systems (MDBSs))

Heterogenous

1. Control

2. Degree of Integration Strongly Integrated

3. Degree of Heterogenity Homogenous Homogenous

Loosely Integrated

Heterogenous

(Most common Multidatabase

Figure 1 Taxonomy of distributed database systems.

of transactions and interact cooperatively to achieve data consistency.

With respect to the second dimension, i.e., degree of integration, a distributed con-

trol DDBS can be regarded as strongly integrated or loosely integrated. In a strongly

integrated, distributed control DDBS, each database site shares su�cient control in-

formation regarding the state of its database and the state of the locally executing

transactions with the other sites in ensuring global consistency. In a loosely inte-

grated, distributed control DDBS, each site preserves some degree of autonomy and

it might not be willing to exchange any control information with any other site. A

special type of loosely integrated, distributed control DDBSs is multidatabase systems

(MDBSs). A MDBS responds to the needs of di�erent human organizations to inter-

operate their database systems already in service supporting their own applications

and users, without making any modi�cations to the way they operate.

With respect to the third dimension, i.e., degree of heterogeneity, the database

sites in a distributed control DDBS, whether strongly or loosely integrated, can be

homogeneous or heterogeneous. In the former case, the database sites employ identical

mechanisms for the management of data and transaction processing whereas in the

latter case, the di�erent sites employ di�erent mechanisms for either the management

of data, transaction processing or both.

17

Database

DBMS

DBMS

Database

DBMS

DBMS

Database

Database

T(i) T(j)

S(i,3)

S(i,2)

Site 1 Site 2

Site nSite 3

S(j,3) S(j,n)

Communication
Network

Figure 2 A distributed database environment.

The contributions of this dissertation are in the context of homogeneous, strongly

integrated, distributed control database systems, commonly referred to as distributed

database systems (DDBSs), and in the context of heterogeneous, loosely integrated,

distributed database systems, commonly referred to as multidatabase systems (MDBSs).

Before reviewing the di�erent protocols and methods that have been proposed in the

literature for both of these environments to ensure the atomicity of distributed trans-

actions, we brie
y discuss a typical distributed transaction processing environment.

In a distributed database environment, each transaction is associated with a coor-

dinator which is responsible for coordinating the di�erent aspects of the transaction

execution. The coordinator of a transaction, which is assumed, without loss of gen-

erality, to be the transaction manager at the site where the transaction has been

initiated. For example, in Figure 2, the coordinator of transaction T

i

is the transac-

tion manager, which is a component of the database management system (DBMS),

at site 1. In the �gure, T

i

accesses data located at sites 1, 2 and 3 and transaction T

j

accesses data located at sites 2, 3 and n. The data distribution is transparent to sub-

18

mitted transactions. A transaction accesses data by submitting its data operations

to its coordinator. Depending on the location of the data objects, the coordinator

determines the appropriate participant site to which it submits each data operation

it receives from the transaction for execution. Hence, each transaction is decomposed

by its coordinator into several subtransactions, each of which executes at a single site.

For example, the subtransactions of T

i

are S

i;1

, S

i;2

and S

i;3

.

The atomicity property of a distributed transaction cannot be guaranteed with-

out taking additional measures beside concurrency control and recovery protocols.

Revisiting our fund transfer example in Section 2.2, consider the case where a fund

transfer transaction has �nished its execution by debiting one account at one site and

crediting another one in another site, and has submitted its �nal commit primitive

to its coordinator. Now, assume that the coordinator forwards the commit primi-

tive of the transaction to both sites that have participated in the execution of the

transaction. However, one of the two participants fails before receiving the commit

primitive. In this case, the participant that has failed will not �nd a commit record

for the transaction in its log during its recovery procedure and will consider the trans-

action as aborted, undoing all its e�ects as part of its recovery procedure. On the

other hand, the site that is still operational, after receiving the commit primitive of

the transaction, will commit the transaction and make it e�ects permanent on the

state of the database at its site. Thus, in this example, the atomicity of the transac-

tion has been violated because the transaction has ended up committing at one site

and aborting at the other.

To prevent such atomicity violations of transactions despite site and communica-

tion failures, an atomic commit protocol is usually employed in a DDBS to coordinate

the commitment of distributed transactions across multiple sites. We discuss various

proposals and implementations of atomic commit protocols in the next section.

19

2PC

IBM-PrN Cooperative Decentralized 3PC 4PCLinearUV

EP

CL

PrC

Reduce blocking after a failure

NPrCMulti-level PrCMulti-level PrA

PrA

Enhance performance during normal processing

Figure 3 Signi�cant steps in the evolution of ACPs.

3.2 Atomic Commitment in Distributed Database Systems

Since the �rst three contributions of this dissertation are in the context of perfor-

mance of atomic commit protocols (ACPs) in DDBSs, in this section, we review the

major ACPs and optimizations that have been proposed in the context of DDBSs.

Considering that the two-phase commit (2PC) protocol is the �rst proposed ACP,

all the other ACPs have evolved from 2PC and are geared towards enhancing its

performance. As shown in Figure 3, some of these 2PC variants have been designed

to enhance commit processing for the normal (i.e., non-failure) case while the others

have been designed to reduce the cost of recovery after a failure.

Since the motivation behind the design of all ACPs is to enhance the performance

of commit processing for the normal processing case or to reduce the cost of recovery

after a failure, all ACPs can be regarded as optimizations to the basic 2PC. However,

we distinguish between a 2PC variant and a 2PC optimization. As it will become

evident below, only a single 2PC variant can be used in a DDBS with any number of

optimizations. Unless stated otherwise, all ACPs discussed in this section are based

on the assumptions that (1) each site is sane

(29; 30)

and (2) each site can cause only

omission failures. That is, each site is assumed to be fail stop

(31)

where it never

deviates from the speci�cation of the protocol that it is using and when it fails, it

20

will, eventually, recover.

In this section, we review ACPs that have been designed to enhance performance

during normal processing, based on the assumption that failures are rare; and ACPs

that have been designed to reduce the cost of recovery after a failure, based on the

assumption that failures are frequent. We also discuss protocols that have been

proposed in order to deal with commission failures in which a site may never recover

or it may deviate from its protocol speci�cation resulting in a non-atomic execution

of transactions. In this way, we cover the whole spectrum of ACPs and the reasons

behind their designs.

This section is structured as follows: In the next three subsections, we discuss the

basic two-phase commit protocol and two variants, the presumed abort protocol and

presumed commit protocol. In Subsection 3.2.4, we discuss the new presumed commit

protocol that has been proposed to enhance the performance of the presumed commit

commit protocol. In Subsection 3.2.5, we review some other two-phase commit pro-

tocol variants while in Subsection 3.2.6 we review some other ACPs. In Subsection

3.2.7, we discuss three important atomic commit protocol optimizations. In Subsec-

tion 3.2.8, we evaluate the performance of presumed abort and presumed commit

protocols using the traditional method of performance evaluation. We also review

some of the e�orts that have been made in the area of analyzing and evaluating

di�erent atomic commit protocols that go beyond the traditional method.

3.2.1 The Basic Two-Phase Commit Protocol

In this section, we �rst describe the basic two-phase commit protocol. Then, we

discuss its recovery aspects.

3.2.1.1 Description of the Basic Two-Phase Commit Protocol. As shown

in Figure 4, the basic two-phase commit protocol (2PC)

(1; 2)

, as the name implies,

consists of two phases, namely a voting phase and a decision phase. During the voting

21

Coordinator Participant

Prepare

Force Write
Decision Record

Force Write
Prepared Record

Force Write
Decision Record

Write non-forced
End Record

Ack

Yes

Decision

V
o
t
i
n
g

P
h
a
s
e

n
o
i
s
i
c

D
e

e
s
a
h
P

Figure 4 The basic two-phase commit protocol.

phase, the coordinator of a distributed transaction requests all the sites participating

in the transaction's execution to prepare to commit whereas, during the decision

phase, the coordinator either decides to commit the transaction if all the participants

are prepared to commit (voted \yes"), or to abort if any participant has decided to

abort (voted \no"). If a participant has voted \yes", it can neither commit nor

abort the transaction until it receives the �nal decision from the coordinator. When

a participant receives the �nal decision, it complies, acknowledges the decision and

releases all the resources held by the transaction (i.e., releases the locks held by

the transaction, removing the transaction control block from its table, etc.). The

coordinator completes the protocol when it receives acknowledgments from all the

participants.

The resilience of 2PC to system and communication failures is achieved by record-

ing the progress of the protocol in the logs of the coordinator and the participants.

The coordinator force writes a decision record prior to sending its �nal decision to

the participants. Since a force write ensures that a log record is written into a stable

storage that survives system failures, the �nal decision is not lost if the coordinator

fails

1

. Similarly, each participant force writes a prepared record before sending its

1

In contrast, a non-forced log write is written into the log bu�er in main memory and its cost is

22

\yes" vote and a decision record before acknowledging a �nal decision. When the

coordinator completes the protocol, it writes a non-forced end record, indicating that

the log records pertaining to the transaction can be garbage collected when necessary.

The end log record indicates to the garbage collection procedure that it can garbage

collect all the log records pertaining to the transaction from the stable log.

In addition to recording the progress of 2PC in its log, each coordinator maintains

a protocol table in its main memory. The coordinator of a transaction documents the

progress of 2PC in its protocol table as well as the identities of the sites participating

in the transaction's execution. This table enables the coordinator to respond to the

inquiries of the participants regarding the status of a transaction, in the case of a

communication or a participant failure, very quickly and without having to access

its stable log. Once the 2PC protocol regarding a transaction is completed, the

coordinator forgets the transaction by discarding all information pertaining to the

transaction from its protocol table.

Clearly, in the absence of failures, 2PC ensures the atomicity of each transaction

because all the sites participating in a transaction's execution will reach a consistent

decision regarding the transaction and enforce it. Now, let us consider the behavior

of 2PC in the case of communication and site failures.

3.2.1.2 Recovery in Two-Phase Commit Protocol. Site and communication

failures are usually detected by timeouts. In 2PC there are four situations where

a communication failure might occur. The �rst situation is when a participant is

waiting for a prepare to commit message from the coordinator which occurs before

the participant has voted. In this case, the participant may unilaterally decide to

abort if it times out while waiting for the prepare to commit message. The second

situation is when the coordinator is waiting for the votes of the participants. Since

the coordinator has not made a �nal decision yet and no participant could have de-

cided to commit, the coordinator can decide to abort. The third situation is when a

negligible compared to a forced write that requires a disk access. However, a non-forced log write

might be lost in the case of a site failure.

23

participant has voted \yes" but has not received a commit or an abort �nal decision

message. In this case, the participant cannot make any unilateral decision because it

is uncertain about the coordinator's �nal decision. The participant, in this case, is

blocked until it re-establishes communication with the coordinator. The forth situa-

tion is when the coordinator is waiting for the acknowledgments of the participants.

In this case, the coordinator re-submits its �nal decision to those participants that

have not acknowledged the decision once it re-establishes communication with them.

Notice that the coordinator cannot simply discard the information pertaining to a

transaction from its protocol table or its stable log until it receives acknowledgments

from all the participants.

To recover from site failures, there are two cases to consider: coordinator's failure

and participant's failure. In the case of a coordinator's failure, the coordinator, upon

its restart, scans its stable log and re-builds its protocol table to re
ect the progress

of 2PC for all the pending transactions prior to the failure. The coordinator has to

consider only those transactions that have started the protocol and have not �nished

it prior to the failure (i.e., transactions associated with decision log records without

corresponding end log records in the stable log). Once the coordinator re-builds

its protocol table, it completes the protocol for each of these transactions by re-

submitting its �nal decision to all the participants whose identities are recorded in the

decision record and waiting for their acknowledgment. Since some of the participants

might have already received the decision prior to the failure and enforced it, these

participants might have already forgotten that the transaction had ever existed. In

this case, these participants simply reply with blind acknowledgments, indicating that

they have already received and enforced the �nal decision.

In the case of a participant's failure, the participant, as part of its recovery proce-

dure, checks whether there exists any transaction in a prepared to commit state (i.e.,

has a prepared log record without a corresponding �nal decision log record). For each

prepared to commit transaction, the participant inquires the transaction's coordina-

tor about its �nal decision. Once the participant receives the �nal decision from the

coordinator, it enforces the decision and completes the protocol by acknowledging

the coordinator.

24

Coordinator Participant

Prepare

Force Write
Prepared RecordYes

Write non-forced
Abort Record

Abort

V
o
t
i
n
g

P
h
a
s
e

n
o
i
s

c
e

i

D

e
s
a
h
P

Figure 5 The presumed abort 2PC protocol (abort case).

3.2.2 The Presumed Abort (PrA) Protocol

The basic 2PC protocol is also referred to as the presumed nothing 2PC (PrN)

protocol

(7)

because it treats all transactions uniformly, whether they are to be com-

mitted or aborted, requiring information to be explicitly exchanged and logged at

all times. However, in case of a coordinator's failure, there is a hidden presumption

in PrN by which the coordinator considers all active transactions at the time of the

failure as aborted transactions. This presumption allows a coordinator in 2PC not

to force write any log records prior to the decision phase. Note that a force write

involves a disk access that suspends the protocol until the disk access is completed.

If a participant inquires the coordinator about an active transaction after the coor-

dinator has failed and recovered, the coordinator, not remembering the transaction,

will direct the participant to abort the transaction, by presumption.

The presumed abort (PrA) protocol is derived from PrN to reduce the cost as-

sociated with aborted transactions by making the abort presumption explicit

(3; 4)

.

When the coordinator of a transaction decides to abort the transaction, in PrA, the

coordinator discards all information about the transaction from its protocol table

and sends out abort messages to all the participants without having to log an abort

25

decision record as it would be the case in PrN (see Figure 5). After a coordinator

failure, if a participant inquires about the outcome of a transaction, the coordinator,

not �nding any information regarding the transaction will direct the participant to

abort the transaction. Furthermore, in PrA, the coordinator of a transaction does not

require abort acknowledgments from the participants because it can discard all infor-

mation pertaining to the transaction from its protocol table once an abort decision is

made. Since the participants are not required to acknowledge abort decisions, they

do not have to force write abort log decisions either. Instead, they write non-forced

abort records.

Compared to PrN, PrA saves a forced log write at the coordinator's site and, a

forced log write and an acknowledgment message from each participant for the abort

case. For the commit case, the cost of PrA remains the same as in PrN. Failures in

PrA are handled as in PrN.

3.2.3 The Presumed Commit (PrC) Protocol

As opposed to PrA protocol that favors aborted transactions, the presumed com-

mit (PrC) protocol is designed to reduce the cost of committed transactions

(3; 4)

.

It is based on the assumption that a transaction is most probably going to be com-

mitted once it has �nished its execution and submitted its commit request to its

coordinator.

In PrC, instead of interpreting missing information about transactions as abort

decisions, which is the case in PrA, coordinators interpret missing information about

transactions as commit decisions. However, in this 2PC variant, a coordinator of a

transaction has to force write an initiation record for the transaction before send-

ing out prepare to commit messages to the participants (Figure 6). The initiation

record ensures that missing information about a transaction will not misinterpreted

as a commit after a coordinator's site failure. Thus, this record is necessary for the

correctness of this variant. In addition, the initiation record contains the identities

of the participants that facilitate recovery after a coordinator failure, which in the

26

Coordinator Participant

Prepare

Commit
Force Write
Commit Record

Initiation Record
Force Write

Force Write
Prepared Record

Yes

V P
ho
a
s
e

t
i
n
g

e
s
a
h
P

c

D
e

i
s
i
o
n

Write non-forced
Commit Record

Coordinator Participant

Prepared Record
Force Write

Initiation Record
Force Write

Yes

Prepare

Abort

Ack

Write non-forced
End Record

P
h
a
s
e

o
V

t
i
n
g

P
h
a
s
e

D
e
c
i
s
i
o
n

Force Write
Abort Record

(a) Commit case. (b) Abort case.

Figure 6 The presumed commit 2PC protocol.

case of PrN and PrA is recorded in the decision records.

As shown in Figure 6 (a), to commit a transaction, the transaction's coordina-

tor force writes a commit record to logically eliminate the initiation record of the

transaction and then sends out its commit decision to all the participants. When a

participant receives the commit message, it writes a non-forced commit record and

commits the transaction releasing all its resources. Since the coordinator can discard

all information about a committed transaction without the acknowledgments of the

participants, a participant does not acknowledge a commit decision.

As shown in Figure 6 (b), to abort a transaction, the transaction's coordinator

does not force write an abort record. Instead, the coordinator, sends out abort

messages to all the participants and waits for their acknowledgments. Once the

coordinator receives the acknowledgments, it discards all information pertaining to

the transaction from its protocol table and writes a non-forced end record. Each

participant, in this case, force writes an abort record and then acknowledges the

coordinator's abort decision.

In the case of a coordinator's site failure, the coordinator re-builds its protocol ta-

ble by scanning its log as part of its recovery procedure and includes each transaction

with an initiation record that is without an associated end record. For each of these

27

transactions, the coordinator sends out an abort message to each participating site

and waits for acknowledgments. A participant has either received and enforced the

abort decision prior to the coordinator's failure or has been left blocked awaiting the

�nal decision. In the former case, the participant will not have any recollection about

the transaction and it will blindly acknowledge the decision. In the latter case, on the

other hand, the participant force writes an abort log record, as if the coordinator did

not fail, and then acknowledges the decision. Once all the required acknowledgments

arrive, the coordinator writes a non-forced end record and forgets the transaction.

In the case of a participant failure, the participant inquires about the outcome

of each transaction that has a prepare log record but without a decision record.

When a coordinator receives an inquiry message pertaining to a transaction, the

transaction either has an entry including an initiation record in the coordinator's

protocol table, or it does not have any entry which means that the coordinator has

forgotten the transaction. In the former case, the coordinator responds with an abort

message and waits for an acknowledgment. In the latter case, not remembering the

transaction, the coordinator responds with a commit message (hence, the presumed

commit presumption holds).

Compared to PrN, PrC saves a forced log write and an acknowledgment message

from each participant for the commit case at the expense of a single extra forced

log write at the coordinator (i.e., the initiation log record). For the abort case, PrC

incurs one extra forced log write at the coordinator compared to PrN.

3.2.4 The New Presumed Commit Protocol

The new presumed commit 2PC (NPrC) variant

(7)

, eliminates the initiation

record of the PrC by (1) giving up full knowledge about those active transactions

prior to a coordinator's site failure and (2) giving up garbage collecting the log records

pertaining to those transactions. To ensure the correctness of the PrC without having

to force write initiation log records, the NPrC introduces the concept of recent trans-

actions (RECT) and potentially initiated transactions (PIT). As shown in Figure 7

28

TID

TID

C

E

R

T

P

I

T

Initiated Transaction

Aborted Transaction

Committed Transaction

l

u

Figure 7 RECT and PIT in NPrC.

RECT is the set of transactions that contains all the transactions with transaction

identi�ers (tids) that are con�ned between a lower bound tid

l

and an upper bound

tid

u

such that all transactions with tids less than tid

l

have �nished the NPrC pro-

tocol and no transaction with a tid higher than tid

u

has started its execution. PIT

is a subset of RECT such that no transactions in PIT has a commit �nal decision.

This means, at the time of a failure, all transactions in PIT are either aborted trans-

actions or transactions that were possibly active at a coordinator's site by the time

of its failure.

As shown in Figure 7, the basic idea behind the NPrC protocol is to bound

RECT by stably recording tid

l

and tid

u

. This is done by assigning transactions

monotonically increasing tids, advancing tid

l

whenever the transaction that has this

tid completes the protocol, and ensuring that no transaction with a tid greater than

tid

u

can start its execution. When the tid

l

is advanced, it is either forced written

as part of the transaction log record if the transaction that caused it to advance is

to be committed, or written into the log bu�er if the transaction that caused it to

29

advance is to be aborted. In the latter case, the tid

l

will be propagated to the stable

log when the log bu�er is
ushed into stable storage when the site runs out of main

memory space, or when a subsequent force log write is performed. tid

u

, on the other

hand, is either chosen to be �xed or by periodically logging candidate tid

u

.

tid

l

and tid

u

are used to determine the PIT set after a coordinator's failure. After

a failure, the coordinator, by scanning its log, determines all committed transactions

prior to the failure and their tids lies between tid

l

and tid

u

. These committed trans-

actions have explicit commit log records in the stable log and are excluded from PIT,

as shown in Figure 7. In this way, PIT contains only those transactions that are either

aborted or were possibly active prior to the failure and for which it is safe to respond

with an abort message if any participant inquires about any of these transactions.

For each coordinator's failure, there is a PIT set. Once the PIT set is determined

after a coordinator crash, it is recorded in the stable storage and the coordinator

starts with a new tid

l

, that is greater than the tid

u

of the previous crash, and a

new tid

u

. When stable memory space becomes full, the PIT sets can be garbage

collected by propagating them to all possible participants. When all the participants

acknowledge the reception of PIT sets, the coordinator can discard them knowing that

no participant will inquire about the outcome of any of the transactions contained in

these sets.

3.2.5 Other Two-Phase Commit Variants

In this section, we discuss other 2PC variants that have been proposed in the

literature and adopted in some commercial systems. The �rst three protocols exploits

the characteristics of the communication networks to enhance the performance of 2PC

protocol. Then, we review the IBM-PrN protocol that has been designed taking into

consideration the necessity of heuristic decision. The next three protocols have been

designed to reduce message, log or time complexities by exploiting the semantics of

transactions and the distributed environment. The analysis of some of these protocols

can be found in the book by Bernstein, Hadzilacos and Goodman

(5)

, while the others,

30

such as IBM-PrN can be found in Samaras et al.

(8)

.

The linear 2PC

(1; 11)

exploits the communication network characteristics to re-

duces message complexity at the expense of time complexity compared to the basic

2PC, making it suitable for token ring local area networks. In linear 2PC, the par-

ticipants are linearly ordered with the coordinator being the �rst in the linear order.

The coordinator sends a message to the site that follows it in the linear order. The

message tells the participant the coordinator's vote and also indicates to the partic-

ipant that it is time to vote. Thus, if the vote is a \yes", the coordinator prepares

itself to commit before sending the message. When a participant receives a vote from

its predecessor in the linear order, it prepares itself to commit if the vote that it has

received is a \yes" vote and its own vote is also a \yes" vote, and sends a message to

its successor. If a participant receives a \no" vote or its own vote is a no, it aborts

the transaction and sends an abort message to its predecessor if it has votes \yes".

The participant also sends a \no" vote to its successor if it has one. Eventually, the

last participant will receive the collective vote of all its predecessors. On a commit

decision, the participant commits the transaction and sends a commit message to its

predecessor which in turn commits the transaction and sends a commit message to

its predecessor, and so on. If the last participant decides to abort the transaction, it

sends an abort message to its predecessor which in turn aborts the transaction and

sends an abort message to its predecessor, and so on. The commit or abort acknowl-

edgments are also propagated to the site which has made the �nal decision (i.e., the

last site in the linear order) in a manner similar to the way the vote messages are

propagated.

By reducing the time complexity from three messages which is the case in 2PC

to two messages, it becomes less likely for a participant to be blocked during commit

processing in the case of a coordinator failure. This is the motivation behind the

design of decentralized 2PC

(12)

. In decentralized 2PC, the interconnecting commu-

nication network is assumed to be fully connected and it reduces time complexity

at the expense of message complexity. In decentralized 2PC, depending on its own

vote, the coordinator sends a message to all participants. As in linear 2PC, the vote

message of the coordinator has a dual role. It tells the participants that it is time

31

to vote and, at the same time, the coordinator's vote. When a participant receives

the coordinator's vote, it broadcasts a \yes" vote to the other participants only if the

coordinator's and its own vote are \yes" votes. Otherwise, the participant aborts the

transaction and broadcasts a \no" vote to the other participants. Hence, in decentral-

ized 2PC, there are two rounds of messages for a participant to make a �nal decision.

The �rst round is the coordinator's vote while the second is the other participants'

votes.

The cooperative 2PC

(32)

also reduces the likelihood of blocking in case of a coor-

dinator failure. In cooperative 2PC, in the case of a coordinator or a communication

failure, a site does not block waiting until it re-establishes communication with the

coordinator. Instead, it inquires the other operational sites that have participated

in the transaction's execution. If any of the operational sites have received the �nal

decision from the coordinator prior to the failure, it informs the inquiring site about

the �nal decision. Thus, reducing the time for which a participant is blocked waiting

for recovery from a failure.

The IBM-PrN, which is part of the SNA LU6.2 architecture

(33; 8)

that de�nes

the peer-to-peer distributed transaction environment, the commit protocols and their

synchronization in this type of an environment, is another 2PC variant. IBM-PrN

has been designed taking into consideration the necessity of heuristic decisions. That

is, in IBM-PrN, a participant site might unilaterally decide to commit or abort a

transaction to avoid any unbearable delays while in a prepared to commit state,

especially in case of failures. Hence, a coordinator in IBM-PrN does not make any

presumptions about the outcome of a prepared to commit transaction after a site

failure. This is because some participants might have decided to commit while the

others have decided to abort the transaction. Therefore, in IBM-PrN, a coordinator

force writes an initiation record before it sends out the prepare to commit messages,

and each participant has to acknowledge the �nal decision regardless of whether the

decision is to commit or to abort the transaction. In this way, the coordinator will

be able to detect any heuristic decision and to correct it. Of course, the intervention

of a human (or automated) operator is required for the restoration of consistency in

the event of of a heuristic decision

(34)

.

32

The unsolicited vote protocol (UV)

(35)

eliminates the voting phase of 2PC based

on the assumption that each participant knows when it has executed the last opera-

tion on behalf of a transaction. In this case, a participant does not have to wait for

the prepare to commit message. Instead, it sends its vote in its own initiative once

it recognizes that the transaction has no more operations to process. It means that

the coordinator either submits to a participant all the operations at the same time

(which is a form of predeclaration) or indicates to the participant the last operation

at the time that the operation is submitted. The latter implies that each transaction

has knowledge about data distribution and can indicate to its coordinator when has

�nished accessing a participant site.

Another 2PC variant that also eliminates the voting phase of 2PC is the early

prepare protocol (EP)

(36; 9)

. EP is based on the assumption that the cost of accessing

a stable storage in some systems is as cheap as accessing main memory. EP combines

UV with PrC without assuming that a participant can recognize the last operation

of a transaction. Since PrC requires the identities of the participants to be explicitly

recorded at the coordinator's log in a forced initiation record, the number of forced

initiation records pertaining to a transaction is equal to the number of the participants

that executed the transaction. This is because the initiation record has to be updated

and forced written each time a new participant is involved in the execution of the

transaction. Furthermore, the participant has to prepare the transaction each time

it executes an operation of the transaction and prior to acknowledging the operation.

This means that the number of forced prepared records pertaining to a transaction

at a participant is equal to the number of operations submitted by the transaction

and executed by the participant.

The coordinator log protocol (CL)

(36; 9)

is another 2PC variant that eliminates

the voting phase of 2PC. CL builds on EP. However, CL is based on the assumption

that transactions are most probably going to commit and are (very) short (i.e., trans-

actions deal with negligible amounts of data). CL eliminates the need for the forced

logging activities required by EP at the participants' sites by having the coordina-

tors maintain the logs and using distributed write-ahead logging (DWAL)

(37)

. That

is, the stable log of a participant site is distributed (i.e., scattered) across multiple-

33

coordinator sites. The CL protocol also eliminates the need for the initiation log

records of EP at the coordinator sites at the expense of having to communicate with

all the participants in the system in case of a coordinator site failure. This is in order

to determine the set of active transactions prior to the coordinator's failure and abort

them instead of wrongly assuming commitment.

Thus far, we have reviewed some of the protocols that have been proposed in order

to minimize the cost of commit processing during normal processing by reducing the

message complexity, the log complexity or the time complexity. Among them were

two protocols (i.e., decentralized and cooperative) that reduce the blocking aspects of

2PC in the case of a coordinator failure. All these protocols have two phases. Some

of them have an explicit voting phase while the others implicit. In the next section,

we review some of the e�orts that have been made in order to eliminate the blocking

aspects of 2PC by adding extra coordination messages and forced log writes.

3.2.6 Other Atomic Commit Protocols

All the protocols that we have discussed thus far have been designed to enhance

the performance of 2PC during normal processing and without assuming commission

failures. That is, they are based on the assumption that when a coordinator fails,

it will recover and become operational again. Furthermore, the coordinator never

deviates from its protocol speci�cation that might lead to inconsistencies by sending

di�erent decision messages to the participants. In this section, we review other ACPs

that have been proposed to reduce the cost of recovery after a failure and to enhance

reliability in the presence of commission failures. Speci�cally, we will brie
y discuss

the three-phase, four-phase and open commit protocols.

Even though the cooperative 2PC, that we discussed in the previous section, re-

duces the likelihood of blocking in the case of a coordinator failure, it is still subject

to blocking in the event of a coordinator's site failure when all other participants

are in their prepared to commit state. The three-phase commit (3PC)

(12)

and the

four-phase commit (4PC)

(38)

ACPs eliminate the blocking aspects of 2PC that are

34

due to site failures. That is, if a coordinator fails, the participants can make their

own decision. In 3PC, an intermediate bu�ering state between the prepared to com-

mit and the �nal commit (or abort) states at the participants' sites is introduced.

If the coordinator fails during commit processing, the operational sites exchange the

status of the transaction among themselves and elect a new coordinator. The new

coordinator commits the transaction if any operational site has the transaction in the

intermediate commit state. Otherwise, the new coordinator aborts the transaction.

In 4PC, on the other hand, the coordinator of a transaction initiates 2PC with a

number of back-up sites that are linearly ordered. The back-up sites do not partic-

ipate in the transaction execution per se but they increase the number of sites that

might have status information about the transaction in the case of a coordinator's

failure. Once the back-up sites have acknowledged the commitment of the transac-

tion, the coordinator initiates 2PC with rest of the participants. Thus, in the case

of a coordinator failure, the back-up site with the least identi�er in the order that is

still operational takes over as the new coordinator and commits the transaction as in

2PC.

The open commit protocols

(29; 30)

(OCPs) have been proposed in the context of

open distributed systems in which the di�erent sites have di�erent reliability character-

istics. In such an environment, a participant site is classi�ed as trusted or non-trusted

node. A trusted node is a one that fails only transiently and when it fails it does

not send misleading messages. Otherwise, the node is considered non-trusted in the

sense that it may never recover or it may deviates from the algorithm of the commit

protocol by sending di�erent messages including misleading ones, causing a commis-

sion failure. The theme behind OCPs is to ensure the atomicity of transactions at

least across trusted nodes and despite the existence of non-trusted ones. This goal is

achieved by delegating the commit processing (i.e., transferring the commit respon-

sibilities) from a non-trusted node to a trusted one and transforming the execution

tree of a transaction, through restructuring, into a di�erent commit tree. In this way,

OCPs guarantee that all trusted nodes will reach an agreement about the outcome

of transactions despite the participation of non-trusted nodes.

35

3.2.7 Atomic Commit Protocol Optimizations

To reduce the cost associated with commit processing, a number of optimiza-

tions have been proposed in the literature and implemented in commercial systems.

Some of them can be used with a number of 2PC variants as well as other ACPs.

Samaras et al.

(33; 8)

survey some of the most common optimizations that are im-

plemented in commercial transactional environments. A recent optimization is opti-

mistic (OPT)

(19)

in which transactions do not adhere to the strict two-phase locking

rules. Since transactions tend to commit when they reach their commit points, in

OPT, a transaction may borrow data that has been modi�ed by another transaction

that has entered a prepared to commit state. That is, when a transaction enters its

prepared to commit state, other transactions can observe its e�ects at the expense

of aborting them if the prepared to commit transaction is aborted. When combined

with an ACP, OPT enhances the overall system performance due to the early release

of data held by prepared to commit transactions.

In this section, we �rst discuss the traditional read-only optimization

(3; 4)

which

is one of the most important optimizations that have been adopted by the distributed

transaction processing standards

(20)

and implemented in a wide range of commercial

systems

(8)

. Then, we mention two other optimizations due to their signi�cance and

incorporation into a number of commonly known commercial systems (e.g., DEC

Dtm

(10)

). The �rst optimization is the last agent

(33; 8)

while the second one is

group commit

(39; 40)

and its lazy commit generalization

(6)

.

Traditionally, a transaction is termed (completely) read-only if all the operations

it has submitted to all the participants are read operations. On the other hand,

a transaction is termed partially read-only if only some of the participants in its

execution have executed read operations. Otherwise, a transaction is termed an

update transaction.

In the read-only optimization, when a participant that has executed only read

operations on behalf of a transaction receives a prepare to commit message from the

transaction's coordinator, it either replies with a \no" or \read-only" vote instead of

36

a \yes" and immediately releases all the resources held by the transaction without

writing any log records.

From a coordinator's perspective, the \read-only" vote means that the transaction

has read consistent data. Furthermore, the read-only participant does not need to be

involved in the second phase of the protocol because it does not matter whether the

transaction is �nally committed or aborted to ensure its atomicity at the participant.

If a transaction is read-only (i.e., all the operations it has submitted to all the

participants are read operations), it does not matter whether the transaction is �nally

committed or aborted since it has not modi�ed any data. Hence the coordinator of

a read-only transaction, in both PrA and PrC, treats the transaction as an aborted

one. This is because it is cheaper to abort than to commit a read-only transaction

with respect to logging. Recall that a coordinator does not write any log records in

PrA whereas abort records are written in a non-forced manner in PrC.

The last agent optimization, being part of the IBM LU6.2 architecture, has been

implemented by a number of commercial products. The last agent optimization

reduces the cost of commit processing in the presence of a single remote participant.

In the last agent, a coordinator prepares itself and the nearby participants to commit a

transaction, and delegates the responsibility of making the �nal decision to the remote

participant. This optimization has a signi�cant performance enhancement when it is

very costly for the coordinator to communicate with the remote participant in terms

of messages (e.g., the communication medium with the last agent is a satellite link).

By using this optimization, there is a saving of a single round of messages which

is the last agent's vote compared to the case where only the coordinator is the one

which makes the �nal decision.

The group commit optimization has been also implemented by a number of com-

mercial products to reduce the cost associated with the forcing of the log records. In

the context of centralized database systems, a commit record pertaining to a trans-

action is not forced on an individual basis. Instead, a single force write to the log is

performed when a number of transactions are to be committed or when a timer has

37

expired. The latter technique is used in order to limit the response time of a trans-

action when the system becomes lightly loaded (i.e., not many activities are going on

in the system). Thus, the cost of a single access to the stable log is amortized among

several transactions.

In the context of distributed database systems, this technique is used at the par-

ticipants' sites only for the commit records of transactions during commit processing.

The lazy commit optimization is a generalization of group commit in which not only

the commit records at the participants are forced in a group fashion but all log records

are lazily forced written on stable storage during commit processing. In addition, the

coordination messages pertaining to di�erent transactions are also propagated in a

grouped fashion. For example, a single message from a participant might contain the

acknowledgments of several decisions pertaining to di�erent transactions as well as

votes for some other transactions. In this way, the cost of sending a single message

is also amortized among several transactions.

3.2.8 Performance Evaluation of Atomic Commit Protocols

As we mentioned in the introduction of the dissertation, traditionally, the perfor-

mance of ACPs is measured using the three metrics, namely, message complexity, log

complexity and time complexity. Based on these metrics, in this section, we evaluate

the performance of PrC and PrA using the above three metrics. We also evaluate

their performance in the context of read-only transactions and using the traditional

read-only optimization. We choose to evaluate PrC and PrA in this section just to

show how performance evaluation of ACPs are usually conducted and to establish

a base for our comparison of these two protocols with the ones that we will present

in this dissertation (Chapters 4 and 6). In this section, we also review some of the

e�orts that have been made to capture the behavior of di�erent ACPs using advanced

methods that go beyond the traditional one.

38

3.2.8.1 Basic Performance Evaluation. Traditionally, the counting of messages

and log records is depicted in a tabular form by considering a pair of a coordinator

and a participant, as Table 1 shows. The table shows the cost associated with update

transactions for the cases of both committed and aborted transactions assuming a

\yes" vote from each participant. In the table, m denotes the total number of log

records, n denotes the number of forced log writes, p denotes the number of messages

received from the coordinator and q denotes the number of messages sent back to the

coordinator.

Given Table 1, during normal processing, the cost to commit a transaction ex-

ecuting at N participants in PrA is 2N + 1 forced log writes and 4N coordination

messages whereas, in PrC, the cost is N + 2 forced log writes and 3N coordination

messages. On the other hand, the cost to abort a transaction in PrA is N forced log

writes and 3N coordination messages whereas, in PrC, the cost is 2N + 1 forced log

writes and 4N coordination messages. Thus, it is cheaper to use PrA in a system

where transactions are most probably going to abort while it is cheaper to use PrC if

transactions have higher probability of being committed. In a system where transac-

tions have the same probability of being aborted as of being committed, it is cheaper

to use PrA. This is because the costs of the two variants are not symmetric. Whereas

the cost to commit a transaction in PrA is the same as to abort a transaction in

PrC, the cost to abort a transaction in PrA is less than to commit a transaction in

PrC. To abort a transaction in PrA, the coordinator does not write any log records

whereas, to commit a transaction in PrC, the coordinator has to force write two log

records. For a similar reason, it is cheaper to terminate a read-only transaction using

PrA rather than using PrC.

For read-only transactions, a coordinator, in both PrA and PrC, aborts a read-

only transaction since it is cheaper than committing it. As shown in Table 2, both

PrA and PrC require the same number of coordination messages to terminate a read-

only transaction. However, with respect to the logging activities, a coordinator in

39

Table 1 The costs associated with update transactions in 2PC and its two common

variants.

Commit Decision Abort Decision

Variants Coordinator Participant Coordinator Participant

m n p m n q m n p m n q

2PC 2 1 2 2 2 2 2 1 2 2 2 2

PrA 2 1 2 2 2 2 0 0 2 2 1 1

PrC 2 2 2 2 1 1 2 1 2 2 2 2

PrA does not write any log records whereas in PrC, a coordinator has to write two

log records, one of which is forced. Not knowing whether a transaction is going to be

read-only, a coordinator in PrC has to force write an initiation record. To forget the

read-only transaction, the coordinator also writes a non-forced end log record when

it receives the read-only votes of the participants.

For a partially read-only transaction (i.e., only some of the participants in its

execution have executed only read operations), a coordinator in both PrA and PrC

behaves as in the case of an update transaction discussed above, considering only

update participants in the second phase of the protocol. However, a transaction

that has performed only read operations at a participant site in PrC will hold the

resources at that site longer than in PrA. This is because a read-only participant

in PrC has to wait until the coordinator has forced the initiation record before it

receives the prepare to commit message which allows it to release the resources held

by the transaction.

From the above performance analysis, we conclude that, generally, PrA is better

than PrC because their costs are not symmetric. By factoring in the e�ects of read-

only transactions, PrA is de�nitely the best. The is due to the cost associated with

the forced initiation log records of PrC. In Chapter 6, we will propose two new

presumed commit variants and a new read-only optimization that reduce the cost

associated with the forcing of initiation records.

40

Table 2 Cost of read-only transactions using the traditional read-only optimization.

Coordinator Participant

Variants m n p m n q

PrA 0 0 1 0 0 1

PrC 2 1 1 0 0 1

3.2.8.2 Advanced Performance Evaluations. Since site failures might lead to

network partitioning, all the ACPs that we have discussed thus far are blocking. In

fact, all ACPs are blocking in case of multiple partitions due to site and commu-

nication failures. Skeen and Stonebraker

(41)

formally modeled crash recovery in

distributed database systems and proved the non-existence of non-blocking ACPs in

presence of even a single network partition. Cooper

(42)

introduced the notion of the

window of uncertainty which de�nes the conditions under which a site is vulnerable

to blocking in the event of a network partition. Based on a probabilistic model,

Cooper also evaluated and compared the expected number of blocked sites in the

case of network partitioning for 2PC, linear 2PC, cooperative 2PC, 3PC and 4PC

with three back-up sites. Not surprisingly, the results of the evaluation supports the

intuition behind the design of these protocols. For example, in his evaluation, 3PC

had the minimal expected number of blocked sites after a partition while 2PC had

the maximal expected number of blocked sites. It should be pointed out that due

to the increased cost that is incurred during normal processing with those protocols

that optimize commit processing for the failure case, such as 3PC and 4PC, these

protocols have never been implemented, at least in their original form, in commercial

systems. In this respect, their signi�cance is merely theoretical.

With respect to performance evaluation, until recently

(18; 19)

, there was no com-

prehensive and comparative experimental studies among di�erent ACPs that go be-

yond the use of the traditional analytical method. This is despite the fact that

41

traditional performance evaluation techniques fail to show the impact on the mag-

nitude of performance di�erences on a system's overall performance when using one

ACP versus another one. Even in these recent studies, a number of important as-

pects have not been considered. These aspects include the modeling of main memory

bu�er management, the type of write-ahead logging and the type of the communica-

tion networks. In our work, that we present in Chapter 5, we consider some of these

aspects. By factoring in the e�ects of these aspects, we reveal the hidden overhead

of the ACPs that we evaluate in our study. Consequently, our results re
ect more

accurately the magnitude of performance di�erences on a system's performance when

choosing one ACP versus another.

Thus far, we reviewed some of the related work that has been conducted by the

di�erent researchers in the context of DDBSs. Since this dissertation also addresses

the issue of atomicity in the context of MDBSs, in the next section, we review some

of the related work that has been done in this context.

3.3 Atomic Commitment in Heterogeneous Multidatabase Systems

In this section, we �rst describe a multidatabase environment and its constituent

components. Then, we overview the di�erent e�orts that have been made to ensure

the atomicity of transactions in the context of multidatabase systems and relate our

work to these e�orts.

As shown in Figure 8, a multidatabase system (MDBS) is a software system that

facilitates interoperability across multiple pre-existing and heterogeneous database

systems. A MDBS allows each database system to continue to operate in an inde-

pendent fashion and (ideally) does not require any changes to existing databases,

applications, and the local database management systems (LDBMSs).

42

Site (1)

Transactions Transactions

Site (2)

LDBMS LDBMS

Site (n)

Transactions

LDBMS

Communication Network

Global Transaction Manager

Global Transactions

Local Local Local AgentAgent Agent

Figure 8 The MDBS model.

As shown in Figure 8, two types of transactions execute in a MDBS:

� local transactions that access data located at the sites where these transactions

are initiated. These transactions execute only under the control of the LDBMSs

and the MDBS is not aware of their existence.

� global transactions that access data located at multiple databases. Global trans-

actions are submitted to and executed under the control of the global transaction

manager (GTM) of the MDBS.

As in the case of (homogeneous) DDBSs, a global transaction is decomposed by

the GTM into several subtransactions, each of which executes as a local transaction

at some site. An agent which resides above each LDBMS, is responsible for the

di�erent aspects of the execution of subtransactions at its site and in particular, of

the termination protocol needed to ensure the atomicity of global transactions.

As shown in Figure 9, there are three approaches that have been proposed in

the literature to ensure the atomicity of global transactions. The �gure captures

43

Atomic Commitment in MDBSs

Non-externalized UnifiedExternalized

Emulate a prepared stateModify Component LDBMSs

Figure 9 Taxonomy of atomic commitment in MDBSs.

these approaches in a form of a taxonomy along the same lines as previous tax-

onomies

(43; 44; 45)

. In the �gure, we classify these three approaches as externalized,

non-externalized, and uni�ed ACPs. This classi�cation is based on the assumption

about whether each LDBMS supports a visible prepared to commit state or not.

That is, whether or not each LDBMS uses and externalizes a commit protocol. An

externalized LDBMS makes its commit protocol public to the outside world through

its interface by accepting and responding to system call pertaining to its commit

protocol. On the other hand, a non-externalized LDBMS does not accept or respond

to an atomic commit protocol system calls. In an MDBS it might happen that there

are some LDBMSs that externalize their ACPs while others do not. Hence, the two

types of termination protocols complement each other. Therefore, a third type of

termination protocol, referred to as uni�ed, which combines the other two types has

been also proposed in the literature. Even though our work �ts in the �rst category

(i.e., externalized ACPs), we also brie
y survey the ACPs that have been proposed

in the other two categories for the sake of completeness.

3.3.1 Externalized Atomic Commit Protocols

Given the current standardization e�orts

(20; 21)

, the research in this direction

is based on the assumption that future LDBMSs will support ACPs with external-

44

ized prepared to commit states. Thus, the challenge is to integrate LDBMSs that

use di�erent and incompatible ACPs. The incompatibility of ACPs means that the

semantics of the coordination messages and the actions that are taken by a LDBMS

that uses one ACP might be completely di�erent than their counterparts in another

ACP. Integrating LDBMSs that use incompatible ACPs in a MDBS is not as trivial

a task as it was previously believed

(46; 43; 47; 48)

. It is not simply the case that

once a LDBMS supports a visible prepared to commit state, it can be integrated in

a MDBS regardless of the ACPs used by the other LDBMSs

(12; 49)

.

Pu et al.

(46)

concentrated on integrating asymmetric commit protocols and sym-

metric ones in their Harmony prototype which integrates centralized LDBMSs where

each of which supports one of the two classes of ACPs. In asymmetric protocols, such

as PrN, only the coordinator is responsible for making the �nal decision whereas in

symmetric protocols, such as decentralized 2PC, all participating sites have the same

right in the execution of the protocol and can commit independently. In the Harmony

project, a component system called Supernova is responsible for translating agree-

ment protocols among the di�erent LDBMSs. In the event that some LDBMSs use

asymmetric commit protocols while the others employ symmetric ones in a transac-

tion execution, Supernova is the coordinator of all asymmetric ACPs and a member

of the symmetric ones. To ensure the atomicity of a transaction, Supernova does not

send out its vote to the symmetric members until it hears from all LDBMSs that use

asymmetric ACPs. Thus, the symmetric participants are prohibited from making a

unilateral decision that might jeopardize atomicity until they receive the Supernova's

vote.

Tal and Alonso

(47; 48)

take the problem one step further. In their work, they

assume that each LDBMS is a DDBS that supports an ACP. In this case, ensuring

the atomicity of transactions is further complicated because a LDBMS, being dis-

tributed, might reach a di�erent decision about the outcome of a transaction than

the other participating LDBMSs in the transaction's execution. For example, as-

sume that the LDBMSs participating in a global transaction's execution are using

decentralized 2PC. Furthermore, assume that the GTM has sent prepare to commit

messages to all participating sites. Since a prepare to commit message in decentral-

45

ized 2PC has a dual role (i.e., it tells each LDBMS that the transaction has �nished

its execution and at the same time the GTM's vote), one LDBMS might commit the

transaction if all the participants at its site have exchanged \yes" votes and another

LDBMS might abort the same transaction if any participant at its site has decided

to abort (i.e., has sent a \no" vote). By using auxiliary participant processes at

each LDBMS, Tal and Alonso interoperate the basic 2PC, linear 2PC, decentralized

2PC and 3PC. For example, in the case of a decentralized 2PC-based LDBMS, the

auxiliary participant (which can be thought of as the agent in our model) is used to

prohibit the other participants at its site from making a decision by not sending its

vote to the participants at its site until it receives the �nal decision from the GTM.

In this way, the participants are blocked from being able to make a commit decision

that might latter jeopardize the atomicity of the transaction.

Mohan et al.

(50; 51)

designed a new 2PC variant called the generalized presumed

abort (GPA) protocol. The motivation behind the design of GPA protocol is to

achieve the e�ciency of presumed abort protocol and the generality of the peer-to-peer

distributed transaction environment. In contrast to the client-server environment

in which only the coordinator can initiate commit processing, in the peer-to-peer

environment, any participant can initiate commit processing. To allow existing sites

to continue to use IBM-PrN without having to modify any of the software applications

at these sites, the GPA is designed as a superset of IBM-PrN. As in presumed abort

protocol, in GPA, the coordinator of a transaction (i.e., the participant that initiates

commit processing) does not force write any log records before the voting phase in the

event that all other participants are using GPA. Thus, GPA is similar to PrA with

respect to logging in the absence of IBM-PrN participants. However, with respect to

the coordination messages, participants have to acknowledge both commit as well as

abort decisions. This modi�cation to the original presumed abort protocol, in GPA,

is in order to cope with heuristic decisions that IBM LU6.2 supports. On the other

hand, if some participants are using IBM-PrN, the coordinator, in GPA, force writes

an initiation record as in the case of IBM-PrN. These modi�cations to the presumed

abort protocol, in GPA, makes GPA a superset of IBM-PrN that allows for a smooth

migration from the old protocol (i.e., IBM-PrN) to the more e�cient GPA protocol.

46

When interoperating di�erent ACPs, there are two issues that we need to deal

with, as we discuss in Chapter 7. The �rst issue is functional correctness, in which

all participating sites in a transaction's execution should reach the same decision

about the transaction. The second issue is operational correctness, in which that

all participating sites (including the coordinator) should also be able to, eventually,

forget a transaction and garbage collect its log records. The work by the �rst two

research groups discussed above has been concentrated on reaching functional correct-

ness when interoperating di�erent ACPs. That is, reaching a consistent agreement

regarding the outcome of global transactions irrespective of the cost of having to re-

member the outcome of terminated transactions forever. In our work, we concentrate

on the second part of the problem which deals with operational correctness. This

is a more pragmatic approach that is implicitly adopted in all commercial database

systems. From this point of view, a practical integration of ACPs should also allow

all sites participating in a transaction's execution to, eventually, forget about the

outcome of the transaction and garbage collect their log. The third research group

above also focused on this issue but concentrated on the implementation aspects of

PrA in order to make it �t into a pre-existing commercial architecture. For this rea-

son, the original PrA protocol was modi�ed such that it acknowledges both commit

as well as abort decisions. In our work that we present in Chapter 7, we interoperate

PrN, PrA and PrC without modifying any of them hence, preserving the autonomy

requirement in MDBSs.

In the next section, we brie
y overview the work that has done in the context of

non-externalized ACPs.

3.3.2 Non-Externalized Atomic Commit Protocols

Most of the existing literature on MDBSs is based on the assumption that each

LDBMS does not externalize its ACP. This assumption means that each LDBMS

is either centralized in nature, hence does not support any form of an ACP, or it

does not externalize its ACP even though it supports one (i.e., it does not expect

or respond to system calls pertaining to its ACP from other systems). Thus, the

47

challenge is to ensure the atomicity of global transactions despite the fact that each

LDBMS does not externalize an ACP. The protocols reported in the literature can

be classi�ed into two categories. The �rst category of protocols suggest modifying

component LDBMSs to support an externalized ACP while the second category of

protocols achieve the atomicity of global transactions by emulating a prepared to

commit state to ensure the atomicity of global transactions.

With respect to autonomy, it should be pointed out that all the protocols that

have been proposed in this direction impose autonomy violations in one way or an-

other. They only di�er in the way they impose autonomy violations and the degree

of such violations. That is, some of them require major changes to LDBMSs while

others require changes to local applications, impose restrictions on the data access

pattern, or the initiation of transactions. The autonomy violations that some of these

methods impose have been formally analyzed by Chrysanthis and Ramamritham

(52)

,

explicitly showing the e�ects of these methods on autonomy and the trade o�s be-

tween di�erent types of autonomy.

In the next section, we discuss why modifying LDBMSs in order to support an

externalized ACP is not a reasonable alternative.

3.3.2.1 Modify Component Local Database Management Systems. To en-

sure the atomicity of global transactions, some researchers suggested modifying the

source code of LDBMSs to support an externalized ACP

(49; 46)

. These proposals do

not only violate the autonomy requirement of LDBMSs; but might be impossible to

achieve. This is because even if the man power required to make such modi�cations

is available, LDBMSs come from di�erent vendors and their source code is usually

not available for such modi�cations.

An alternative to this solution is to emulate a prepare to commit state that ensures

the atomicity of global transactions which we discuss next.

48

3.3.2.2 Prepared State Emulation. The other alternative that ensures the atom-

icity of global transactions is to emulate a prepared to commit state at each LDBMS

site without having to modify the source code of the LDBMS. Emulation-based pro-

tocols still violate the autonomy of the database sites with various degrees but less

than modifying the source code of the component LDBMSs discussed above. In this

direction, guaranteeing the atomicity of global transactions can be achieved using

one of three approaches that we discuss below.

The three approaches are: (1) commitment after, (2) commitment before and (3)

hybrid. The �rst two approaches are based on the relative commitment of the sub-

transactions pertaining to a global transaction at the participating LDBMSs with

respect to the commitment the global transaction by the GTM

(53)

. That is, in the

�rst approach, commitment after, the LDBMSs participating in a global transac-

tion's execution commit the transaction locally after the GTM has made the �nal

commit decision. Thus, in the event that a LDBMS aborts the transaction after

the �nal commit decision is made but before it has received the decision, the ef-

fects of the transaction should be redoable or retriable. In a redo-based method,

only the write operation of an aborted subtransaction are redone again whereas in a

retry-based method, all the operations, including the read operations, are re-executed

again. A number of methods have been proposed to realize the commitment after

approach. These methods are based on either data partitioning

(54; 55; 56; 57)

, re-

routing

(53; 58)

, MDBS exclusive right

(59; 60; 61; 62; 63)

or reservations

(64; 45)

. For

example, in data partitioning, the type of a transaction (i.e., local versus global)

determines which data items the transaction can access and in which mode (i.e.,

update versus read). By restricting the access pattern of transactions to data, the

subtransactions pertaining to a global transaction can be redone.

In the second approach, commitment before, the LDBMSs commit a transac-

tion before the GTM has made its �nal commit decision. Thus, in the event that

the GTM has �nally decided to abort the transaction, the e�ects of the transac-

49

tion should be undoable. The methods that realize commitment before are based on

either compensation

(1)

or reservations

(64; 45)

. Compensation-based methods guar-

antee semantics atomicity which is a weaker notion than the traditional atomicity

of transactions, whereas reservations can be used to ensure either notions of atomic-

ity. In a compensation-based method, unlike traditional atomicity, the state of a data

item after the transaction is undone might not be the same as it was before the trans-

action had modi�ed the data item. For example, in a hotel reservation application,

the number of single rooms available in the hotel after a transaction has reserved a

room (for a client) might not be the same after its associated compensating transac-

tion has executed (i.e., if the client has decided to cancel his/her reservation after a

couple of days). This is because other transactions and compensating transactions

might have executed in between the client's two transactions.

The third approach, hybrid, is basically a combination of the other two ap-

proaches. For example, in the pivot method, some subtransactions of the same global

transaction can be retriable while others are compensatable

(65)

. The pivot subtrans-

action, on the other hand, is neither retriable nor redoable. To ensure the atomicity

of whole transaction, all compensatable subtransactions should always commit before

the pivot subtransaction while all retriable subtransactions should commit after the

pivot subtransaction.

As we mentioned above, the uni�ed approach, which we discuss next, combines

both externalized and non-externalized methods to ensure the atomicity of global

transactions.

3.3.3 Uni�ed Atomic Commit Protocols

With minor di�erences with respect to their classi�cations and terminologies, both

Nodine

(44)

and Mullen

(45)

proposed a unifying approach in which they integrate

di�erent methods that ensure global transaction commitment. Both researchers at-

tempt to provide the most general and
exible framework that ensures the atomicity

of transactions despite the diversity of the semantics of transactions and data. How-

50

ever, in both of these works, only functional interoperation is achieved with respect

to the traditional atomicity of transactions, since the only requirement is the support

of a visible prepare to commit state by each site that employs an ACP. Otherwise,

each site must use the same ACP if operational interoperation is to be achieved. Our

work di�ers from their work in that we do not assume a single externalized 2PC

variant but rather we integrate LDBMSs that use di�erent externalized 2PC variants

in a practical manner.

3.4 Summary

In this chapter, we classi�ed the di�erent types of distributed database systems

based on a three-dimension taxonomy. These dimensions are: (1) locality of control,

(2) degree of integration and (3) degree of heterogeneity. Based on our taxonomy, we

emphasized that our contributions lie within homogeneous DDBSs and heterogeneous

MDBSs. Then, we reviewed related work in both areas of research. In the context

of DDBSs, we have related the evolution of the di�erent ACPs to the �rst published

and known ACP namely, the two-phase commit protocol. In the context of MDBSs,

we have classi�ed the di�erent methods that have appeared in the literature based on

their assumptions about whether the local database management systems externalize

ACPs or not, and brie
y surveyed some of these methods.

In the next chapter, we present the �rst contribution of this dissertation, namely,

the implicit yes-vote and implicit yes-vote with a commit coordinator protocols which

are targeted towards future distributed database systems interconnected via high

speed networks.

51

4.0 THE IMPLICIT YES-VOTE COMMIT PROTOCOL

An e�cient ACP that scales well for future gigabit-networked distributed database

systems should minimize message, log and time complexities. In this chapter, we

present such a protocol, called implicit yes-vote (IYV), that minimizes all three met-

rics by eliminating the (explicit) voting phase of the two-phase commit protocol, in

particular of presumed abort (PrA) protocol. IYV achieves this performance en-

hancement by exploiting (1) the semantics of the database management mechanism,

i.e., the use of strict two-phase locking (S2PL) and write-ahead logging (WAL), and

(2) the characteristics of gigabit-networks, i.e., the propagation latency of messages

is more of an issue than the size of messages

(66; 67)

. Based on these two assump-

tions, IYV not only e�ectively eliminates the (explicit) voting phase of the two-phase

commit (2PC) protocol but it also supports the notion of forward recovery. Through

forward recovery, IYV enables partially executed transactions at a participant site,

after the participant has failed and recovered, to resume their execution on the failed

participant without having to abort them.

Based on the �rst assumption (i.e., S2PL), it is not possible for a participant to

abort a transaction after it has executed and acknowledged all the operations received

from the transaction. In IYV, rather than forcing a prepared log record at the end

of a transaction's execution at a participant which indicates the explicit prepared to

commit state which is the case in the 2PC protocol, a transaction enters an implicit

prepared to commit state after the execution of each of its operations without force

writing any prepared to commit log records. That is, since the transaction is guaran-

teed to be serializable after the execution of the last operation at a participant site,

the transaction is assumed to have entered a prepared to commit state at the partic-

ipant site once the last operation is executed and acknowledged. Two fundamental

questions still need to be answered in order to be able to utilize the implicit prepared

state idea: (1) How would a participant be able to recover the state of a transaction

with respect to the control information over its database, in the case of a site failure,

52

without having to explicitly prepare the transaction before acknowledging each of its

operations i.e., without force writing a prepared log record? (2) How would a partic-

ipant be able to forward recover a transaction if it cannot re-acquire the read locks

that were held by the transaction prior to a failure to fully reconstruct the control

state over the database?

IYV answers both questions through a partial replication of the control infor-

mation of the participant sites at the coordinators, given that (1) migrating large

amounts of data from a participant to a coordinator (and vice versa) in gigabit

networks will not pose a problem

(68; 69; 70)

; and (2) the cost of forcing a log is

practically independent of its size, i.e., the number of records to be written, and

is due to queueing delays. We call this replication of control information replicated

write-ahead logging (RWAL). In RWAL, the redo part of a participant's log is trans-

ferred and logged at the coordinators' sites. To facilitate forward recovery, each

participant's lock table is also partially replicated at the sites of the coordinators.

In the next section, we describe IYV and discuss its behavior in the presence

of failures. The basic IYV assumes that all participant sites are highly reliable.

However, due to pragmatic considerations, it is expected that, for some time, future

distributed database sites might contain sites that use old technologies with less re-

liability characteristics. For this reason, in Section 4.2, we propose an IYV variant

called the implicit yes-vote with a commit coordinator (IYV-WCC) that takes into

consideration the reliability characteristics of individual database sites

(71)

. In Sec-

tion 4.3, we discuss the correctness of the IYV assumption about the semantics of

S2PL and explain the need for the propagation of the read locks to the coordinators

to support forward recovery in more detail. In Section 4.4, we discuss the di�erences

and similarities of IYV with other major 2PC variants whereas, in Section 4.5, we

analytically evaluate the performance of IYV and IYV-WCC and compare it with

the performance of the same 2PC variants that we discussed in Chapter 3.

53

4.1 The Implicit Yes-Vote (IYV) Protocol

In this section, we present the details of our protocol and discuss what kind of

information is needed to be logged and where. Then, in Section 4.1.2, we discuss the

recovery aspects of IYV.

4.1.1 Description of IYV Protocol

As in the case of 2PC, a coordinator records information pertaining to the execu-

tion of a transaction in its protocol table in main memory. Speci�cally, a coordinator

keeps for each transaction the identities of the participants and any pending request

at a participant.

An operation submitted by a transaction can be either an update or a read opera-

tion. Following the S2PL protocol, before the execution of an operation, a participant

places a write lock on each data item that is to be updated and a read lock on each

data item that is to be read by the operation. The locks are kept in a lock table in

main memory.

Once an operation is executed successfully, the participant acknowledges (ACK)

the coordinator with a message that contains the results of the operation. In IYV,

the participant also includes all the read locks that have been acquired during the

execution of the operation. For an update operation, a participant also includes in

the acknowledgment message all the redo log records that have been generated during

the execution of the operation with their corresponding log sequence numbers (LSNs).

As shown in Figure 10, a participant does not force its log into stable storage prior to

acknowledging an operation. If a participant fails to process an operation, it aborts

the transaction and sends a negative acknowledgment (NACK) to the transaction's

coordinator.

When a coordinator receives an ACK from a participant, it writes a non-forced log

record containing the received redo records along with the participant identity. Hence,

54

PARTICIPANT STATECOORDINATOR

Write non-forced

Abort log

Active

Prepared

Active

Prepared

Active

Prepared

Write non-forced

Write non-forced
redo log record(s)

Write non-forced
redo log record(s)

Write non-forced Abort
log record

redo log record(s)
Write non-forced

redo log record(s)

Write non-forced Abort
log record

Op(1)

ACK Op(1)

Op(2)

ACK Op(2)

Op(n)

ACK Op(n)

Abort

(a) Abort case

PARTICIPANT STATE

Write non-forced
redo log record(s)

Write non-forced
redo log record(s)

Write non-forced
redo log record(s)

Write non-forced
Commit log
record

Active

Prepared

Active

Prepared

Committed

Committing

and forced Commit
redo log record(s)
Write non-forced

redo log record(s)
Write non-forced

redo log record(s)
Write non-forced

Write non-forced
End log record

COORDINATOR
Op(1)

ACK Op(1)

Op(2)

ACK Op(2)

Op(n)

ACK Op(n)

Commit

ACK

(b) Commit case

Figure 10 The IYV coordination messages and log writes.

55

the coordinator's log contains a partial image of the redo part of each participant's

log which can be used to reconstruct the redo part of a participant's log in case it is

corrupted due to a system failure. Also, as part of its protocol table, the coordinator

maintains a participants' lock table (PLT) in which it records the read locks included

in the ACK message along with the identity of the participant. As a result, the

coordinator's PLT contains a partial image of the lock table of each participant. The

PLT is used in the case of a participant failure in order to enable the participant

to recover its state exactly as it was prior to the failure, thereby allowing partially

executed transactions that are still active in the system to forward recover and resume

their execution after the participant has recovered, without violating serializability

(see subsection 4.3).

As shown in Figure 10 (a), if the coordinator receives either an abort request

from the transaction or a NACK regarding the transaction from a participant, the

coordinator aborts the transaction. In Figure 10 (a), we assume that the transaction

has requested to abort. On an abort decision, the coordinator writes a non-forced

abort log record and sends abort messages to all the participants. On the other

hand, when the coordinator of a transaction receives a commit primitive from the

transaction after all the transaction's operations have been successfully executed and

acknowledged, as shown in Figure 10 (b), it commits the transaction. On a commit

decision, the coordinator force writes a commit log record that contains the identities

of all participants and then, sends commit messages to all participants.

When a participant receives a commit message regarding a transaction, it writes

a non-forced commit log record and commits the transaction, releasing all the trans-

action's resources. A participant acknowledges a commit decision only after the

decision log record is placed into stable storage as a result of a log bu�er over
ow.

If a participant receives an abort message, it writes an abort record and aborts the

transaction, releasing all the resources held by the transaction. Unlike commit de-

cisions, a participant in IYV does not acknowledge an abort decision, similar to the

presumed abort protocol (that we discussed in Section 3.2.2).

56

For a commit decision, when the coordinator receives acknowledgments from all

the participants, it writes a non-forced end log record and discards all information

pertaining to the transaction from its protocol table including the list of locks that are

stored in the PLT, knowing that no participant will inquire about the transaction's

status in the future.

4.1.2 Recovery in IYV Protocol

As shown in Figure 11, IYV is resilient to both communication and site failures.

As is the case in the basic two-phase commit protocol (2PC) and all its variants, site

and communication failures are detected by timeouts.

4.1.2.1 Communication Failures. Although communication failures are assumed

to be rare in high speed networks, there are three situations in IYV where a commu-

nication failure might occur while a site is waiting for a message. These situations

represent checkpoints at which a communication failure might occur during the course

of the protocol, as depicted earlier in Figure 10. The �rst situation is when a par-

ticipant has no pending acknowledgments and is waiting for a new operation or a

�nal decision. This is shown as the �rst case of the communication failure in the

participant algorithm in Figure 11. In this case, the participant is blocked until the

communication with the coordinator is re-established. Then, the participant inquires

the coordinator about the transaction's status. The coordinator replies with either

a �nal decision or a still active message. In the former case, the participant enforces

the �nal decision and then acknowledges it if it is a commit decision, while in the

latter case, the participant waits for further operations.

The second situation is when the coordinator of a transaction is waiting for an

operation acknowledgment from a participant. This is shown as the �rst case of com-

munication failures in the algorithm of the coordinator in Figure 11. In this case,

the coordinator may abort the transaction and submit a �nal abort decision to the

rest of the participants. Similarly, the participant may abort the transaction if the

57

communication failure has occurred while the participant has a pending acknowledg-

ment. This is shown as the second case of communication failures in the participant

algorithm in Figure 11. Notice that the coordinator of a transaction may commit the

transaction despite communication failures with some participants as long as these

participants have no pending acknowledgments.

The third situation is when the coordinator of a transaction is waiting for the

acknowledgments of a commit decision. Since the coordinator needs the acknowl-

edgments in order to discard the information pertaining to the transaction from

its protocol table and its log, it re-submits the decision once these communication

failures are �xed (the second case of communication failures in the coordinator algo-

rithm). When a participant receives the commit decision after a failure, it either just

acknowledges the decision if it has already received and enforced the decision prior

to the failure

1

, or enforces the decision and then sends back an acknowledgment.

4.1.2.2 Site Failures. As mentioned above, we are assuming that each site employs

physical logging and uses a Undo/Redo crash recovery protocol in which the undo

phase precedes the redo phase (that we discussed in Section 2.2.2).

Coordinator Failure

Upon a coordinator restart, after a failure, the coordinator re-builds its proto-

col table by scanning its stable log. The coordinator needs to consider only those

transactions that have commit decision records without a corresponding end records.

As shown in the coordinator recovery algorithm (the �rst step after a site failure

in Figure 11), for each of these transactions, the coordinator creates an entry in its

protocol table that includes the identities of the participants as recorded in the trans-

action's decision record. Then, it restarts the decision phase of IYV for each of these

transactions by re-submitting its decision to all the participants and resumes normal

operation.

1

A participant without any memory regarding the transaction is assumed to have already enforced

the decision and discarded all information pertaining to the transaction.

58

Coordinator's Algorithm

In case of a communication failure:

1. Abort each active transaction that has a pending acknowledgment at an inaccessible site or no participant

site can be found to process one of the transaction's operations.

2. Re-submit the commit decision of each committed transaction without and end record after the failure is

�xed.

In case of a site failure:

1. For each transaction that has a commit decision record in the stable log without a corresponding end record,

include the transaction in the protocol table and restart the decision phase.

2. Abort all active transactions (i.e., transactions without decision log records).

3. Do not consider transactions with end records already in the stable log.

4. Resume normal processing.

Participant's Algorithm

In case of a communication failure:

1. Wait until the failure is �xed and then inquire about the status of all active transactions without pending

acknowledgments.

� Either a decision or a still active message will be received for each of these transactions.

2. Abort all active transactions (i.e., transactions with pending acknowledgments).

In case of a site failure:

1. Analysis phase: identify committed, aborted and active transactions. Also, determine the largest LSN.

2. For each coordinator, send a recovering message containing the largest LSN.

3. Undo the e�ects of aborted and active transactions.

4. Once the repair messages arrive, repair the log, update the list of committed and still-active transactions and

re-build the lock table.

5. Complete the redo phase.

� Redo committed transactions and release their locks.

� Redo still-active transactions and retain their locks.

6. Resume normal processing.

Figure 11 Recovery in IYV Protocol.

59

If a participant has already received and enforced a �nal commit decision prior to

the failure, as in the case of a communication failure, the participant simply responds

with an acknowledgment. If the participant has not received the decision, it must

have been waiting for the decision and once it receives the decision, it writes a non-

forced commit record and then sends an ACK message when the decision record is

in the stable log.

For those transactions without �nal decision records (i.e., those transactions that

were active prior to the failure or their non-forced abort records did not make it to

the stable log before the failure), the coordinator can safely forget them and consider

them as aborted transactions (the second case of the coordinator recovery algorithm).

If a participant in the execution of one of these transactions has a pending acknowl-

edgment, when it times out due to the coordinator site failure, it will abort the

transaction, as in the case of a communication failure that we discussed above. On

the other hand, if the participant is left blocked (i.e., the participant has acknowl-

edged all a transaction's operations and is in the implicit prepared to commit state),

when the coordinator recovers, the participant will inquire about the status of the

transaction. The coordinator, not remembering the transaction after its recovery,

will respond with an abort message by presumption. For those transactions that are

associated with decision records as well as end records (the third case in the coordi-

nator recovery algorithm), the coordinator can safely discard all information about

these transactions, knowing that no participant will inquire about their outcome in

the future.

Participant Failure

Also shown in Figure 11 are the steps of the participant recovery after a site failure.

Since the entire log might not be written into a stable storage until after the log bu�er

over
ows, the log may not contain all the redo records of the transactions committed

by their perspective coordinators after a failure of a participant. Thus, during the

analysis phase of the restart procedure, the participant determines the largest LSN

that is associated with the last record written in its log that survived the failure

(the �rst step in the participant recovery algorithm). Then, the participant sends a

60

recoveringmessage that contains the largest LSN to all coordinators in the system (the

second step in the recovery algorithm). In the mean time, the participant recovers

those aborted and committed transactions that have decision records pertaining to

them already stored in its stable log (the third step in the algorithm). That is,

while waiting for the reply messages to arrive from the coordinators, the undo phase

can be performed, even potentially completed, and the redo phase can be initiated.

This ability of overlapping the undo phase with the resolution of the status of active

transactions and the repairing of the redo part of the log, partially masks the e�ects

of dual logging and communication delays. Note that because of the use of write-

ahead logging (WAL) (that we discussed in Section 2.2.2), all the required undo log

records that are needed to eliminate the propagated e�ects of any transaction on the

database are always available in the participant's stable log and never replicated at

the coordinators' sites.

When a coordinator receives a recovering message from a participant, it will know

that the participant has failed and is recovering from the failure. Based on this

knowledge, the coordinator checks its protocol table to determine each transaction

that the participant has executed some of its operations and the transaction is either

still active in the system (i.e., still executing at other sites and no decision has been

made about its �nal status, yet) or has committed but did not �nish the protocol (i.e.,

a �nal decision has been made but the participant has not acknowledged the decision

prior to its failure). For each transaction that is �nally committed, the coordinator

responds with a commit status along with a list of all the transaction's redo records

that are stored in its log and have LSNs greater than the one that was included in

the recovering message of the participant.

For each active transaction that is still in progress in other sites, the coordinator

responds with a still-active status containing, as in the case of a committed transac-

tion, a list of the redo records associated with LSNs greater than the one included

in the recovering message of the participant. The message also contains all the read

locks that were held by the transaction at the participant's site prior to its failure.

61

All these responses and redo log records are packaged with the read locks acquired

by active transactions in a single repair message and sent back to the participant. If

a coordinator has no active transactions and all committed transactions have been

acknowledged as far as the failed participant is concerned, the coordinator sends an

ACK repair message, indicating to the participant that there are no transactions to

be recovered as far as this coordinator is concerned.

Once the participant has received reply messages from all the coordinators (the

third step in the participant recovery algorithm in Figure 11), the participant repairs

its log and completes the redo phase. The participant also re-builds its lock table

by re-acquiring the update locks during the redo phase in conjunction with the read

locks received from the coordinators. Once the redo phase is completed (the fourth

step in the participant recovery algorithm), the participant acknowledges all commit

decision responses once these commit decisions are in its stable log, as in the case of

normal processing. Then the participant resumes its normal processing (the last step

in the participant recovery algorithm). Thus, in IYV's recovery algorithm, a long-

executing transaction is not necessarily aborted as a result of a participant failure as

would be the case in all other ACPs.

Simultaneous Coordinator and Participant Failures

The case of an overlapped coordinator and participant failure is handled using

the same procedure as we discussed above. However, in this case, the participant

is left blocked and cannot proceed in its recovery procedure until the coordinator

has recovered. Even though this is a reasonable trade o� considering the expected

high reliability characteristics of future database sites, we still need a protocol that

can be used with less reliable sites (for example, sites that use old technologies with

less reliability). In the next section, we present an IYV protocol variant that we

designed for this purpose. This IYV protocol variant is compatible with IYV but it

is more costly than than IYV. However, as we show when we evaluate IYV and other

protocols, its cost remains below the 2PC variants that require an explicit voting

phase.

62

4.2 The IYV with a Commit Coordinator (IYV-WCC) Protocol

IYV reduces the time required to commit a distributed transaction at the expense

of independent recovery of failed participant sites. In this section, we propose a novel

coordination scheme for IYV that reduces the window of vulnerability to blocking and

minimizes the time required for the sites to become operational after a failure. The

new scheme combines the delegation of commitment technique with a timestamp

synchronization mechanism. Although this new scheme incurs extra coordination

messages and log writes, it enhances the performance of IYV during recovery in the

presence of less reliable sites while still maintaining the cost of commit processing

during normal processing below that of 2PC and its other well known variants.

By separating the execution of operations from commit processing of transactions,

a participant in 2PC is able to save at its local stable storage all the log records

pertaining to a prepared to commit transaction using a single force log write. Thus,

after a system crash, a participant has all the necessary information in its log to

recover independently and resume normal processing while waiting to resolve the

status of in-doubt transactions (i.e., transactions with prepare log records but without

associated decision records). In IYV, forcing the log every time a transaction enters

the prepared to commit state would have been prohibitively expensive. Instead, the

redo part of the log of a participant is replicated at the coordinators' sites. Therefore,

a recovering participant in IYV needs to communicate with all the coordinators in

order to determine which of the active transactions in its site have been committed

and which are still in progress as well as their accessed data items. Because of this, a

participant cannot independently recover and it has to block any access to its entire

database until it receives replies from all the coordinators. Thus, in order to deal with

unreliable coordinators, it is imperative that all participants become operational in a

bounded amount of time, in a similar manner as in 2PC. Towards this end, we develop

an IYV variant that utilizes two sites as coordinators and to involve delegation of

commitment.

In this new IYV variant, an unreliable coordinator can be responsible for the

execution of transactions initiated at its site which is cheaper than using a remote,

63

reliable coordinator. When a transaction �nishes its execution, the coordinator at the

site where the transaction has been initiated, termed the execution coordinator (EC),

prepares itself to commit the transaction and delegates the �nal commit decision to

a more reliable site (i.e., a site that fails rarely and if it fails it recovers very quickly),

termed the commit coordinator (CC). The delegation of commitment is achieved by

sending a message from the EC to CC. The delegation message includes the identities

of the participants as well as all the redo log records generated during the execution

of the transaction with their associated LSNs. In this way, a recovering participant

can inquire both coordinators and will be able to �nish its recovery process as soon

as it receives a reply from either of the two coordinators. Since the participant will

receive a response from at least the reliable CC, the participant will be able to recover

in a bounded amount of time, allowing new transactions to execute at its site. Thus,

reducing the overall cost of recovery in IYV.

4.2.1 Description of IYV{WCC Protocol

As mentioned above, in this IYV variant, each unreliable coordinator is paired

with a more reliable commit coordinator that is responsible for the commit processing

of the transactions initiated at the unreliable site. All such pairings are known to

both EC and CC coordinators and all participants in the system.

As in IYV, when a participant receives an operation pertaining to a transaction

from an EC, it includes the redo records generated and the read locks acquired

during the execution of the operation in the ACK message. The participant also

generates a timestamp based on its local clock for the transaction after successfully

executing the transaction's �rst update operation and includes the timestamp in the

ACK message as well. That is, each transaction is associated with a begin timestamp

vector (BTV) that contains an entry for each participant that has executed an update

operation. As it will become clear below, timestamping is the key for the correctness

of this IYV variant because it ensures that a CC will always make consistent decisions

about the outcome of transactions delegated to it by any EC and despite failures.

If a participant fails to execute an operation, it aborts the transaction and sends a

64

NACK message. If an EC receives a NACK message in response to an operation

request from a participant or an abort primitive from the transaction, the EC aborts

the transaction and sends an abort message to each participant (except the one which

has sent a NACK message, if any) and forgets the transaction.

Now, let us examine in detail the commitment of a transaction in the presence

of delegation of commitment. During the discussion, we will refer to Figure 12 when

numbering the actions taken in each step of the commit process. When a transaction

�nishes its execution at all participating sites successfully and submits its �nal commit

primitive to its EC, the EC prepares itself to commit the transaction by force writing

a prepare log record which includes the identities of all participants as well as the

timestamp at each update participant (i.e., the BTV). Notice that the forced prepare

log record also causes all redo log records received from the participants to be forced

into the stable log (action 1 in Figure 12). Then, the EC delegates the commit

responsibilities to its associated CC. The delegation action is achieved by sending an

intention to commit message (action 2). This message contains the identities of the

participants, all the redo log records generated during the execution of the transaction

with their corresponding LSNs, and the timestamps at the update participants. Thus,

the CC is involved in a transaction's commitment process only when the transaction

has �nished its execution successfully at all participating sites and invoked the commit

transaction management primitive.

A CC keeps track of the time of the most recent crash of each participant by

maintaining a failure timestamp list (FTSL). The FTSL contains the local times

of the participant sites and it does not require any global clock synchronization.

When a CC receives an intention to commit message pertaining to a transaction, the

CC compares the transaction's BTV with the FTSL. Speci�cally, the CC compares

the timestamp that has been assigned to the transaction by each participant to the

participant's most recent crash timestamp. If the timestamp of the transaction at

a participant is greater than the failure timestamp of the participant, it means that

the transaction has been initiated after the participant has recovered from its most

recent site failure and the participant has executed all the transaction's operations

without a failure since its most recent failure. If this is the case for all the entries in

65

Participant

Ack Commit

Commit Record

Commit

Ack Commit

4

5

6

6

6

4
Commit

2

Execution
Coordinator Coordinator

Commit 3

7

Commit Record

Write non-forced
End Record

7 End Record
Write non-forced

5

1

Commit Record

Ack Commit

(EC) (CC)

Force write
Write non-forced

Write non-forced

Force write
Prepare Record

Intention to commit

Figure 12 The coordination messages and log writes in IYV-WCC.

the BTV, the CC commits the transaction. That is, since all the participants have

executed all the operations of the transaction without any site failure in between

the time the transaction has been initiated and the time the CC has received the

intention to commit message, the CC commits the transaction. Otherwise, the CC

aborts the transaction.

On a commit decision, the CC force writes a commit log record (action 3) and

sends a commit message to each participant (including the EC) (action 4). When a

participant receives such a message, it writes a non-forced commit log record (action

5) and sends a commit acknowledgment to both of the CC and EC (action 6), only

when the commit record has been propagated to the stable log. Similarly, when

the EC receives a commit message, it writes a non-forced commit record and sends

a commit acknowledgment to the CC. When the CC and EC receive the required

acknowledgments, they write non-forced end log records (action 7) and forget the

transaction. The commit acknowledgment sent to the EC by the participants has a

dual role. First, it tells the EC that the transaction has committed which is necessary

in the case that the CC fails after making the decision but before sending it to the EC.

Second, it allows the EC to take over during the recovery of the CC after a failure

and direct any participant that inquires about the outcome of the transaction to

commit the transaction. That is, if any participant has received the commit decision

66

before the CC has failed, the EC will know about the decision and direct any other

participant that inquires about the transaction status to commit the transaction.

On an abort decision, on the other hand, the CC sends an abort message to the

EC and to each participant where the transaction is still active (i.e., has its failure

timestamp less than the transaction's timestamp) and forgets the transaction without

writing any log records. There is no need to send abort messages to participants

that have failure timestamps greater than the transaction's timestamp because these

participants have already aborted and undone the e�ects of the transaction during

their recovery, as we will show in the next section. When a participant receives an

abort message from a CC pertaining to a transaction, it aborts the transaction and

releases all the resources held by the transaction, without writing any log records or

acknowledging the decision.

4.2.2 Recovery in IYV{WCC

In this section, we discuss the recovery aspects of IYV{WCC. IYV{WCC is re-

silient to both communication and site failures that are detected by timeouts, as it

is the case in all other ACPs.

4.2.2.1 Communication Failures. In IYV{WCC, there are �ve situations where

a site is waiting for a message. The �rst situation is when the EC has forced a prepare

log record for a transaction and has sent an intention to commit message to the CC.

In this situation, the EC is left blocked. It cannot determine the �nal status of the

transaction until it receives the �nal decision from the CC or an acknowledgment

message from a participant indicating that the transaction has committed. While in

the �rst situation, the EC inquires the CC once it re-establishes communication with

the CC if it has not heard from any of the participants. The CC replies with an abort

message if it has no recollection about the outcome of the transaction. Otherwise,

the CC responds with a commit message that has to be acknowledged by the EC.

67

The second situation is when the EC is waiting for the acknowledgments from

the participants pertaining to a committed transaction. While in this situation, the

EC re-submits a commit message to each participant that has not acknowledged

the commitment of the transaction. When a participant receives such a message,

the participant has either received a similar message from the CC and committed

the transaction or it has been left blocked awaiting for the �nal decision. In the

former case, the participant will have no re-collection about the transaction and

will respond with an acknowledgment. On the other hand, if the participant is left

blocked, it will commit the transaction by writing a non-forced commit log record and

will acknowledge the EC once the log record is propagated to the stable log. Once

the EC receives the required acknowledgment messages, it completes the protocol by

writing a non-forced end log record and forgets the transaction.

The third situation is similar to the second one but with respect to the CC. That

is, when the CC has already made its �nal commit decision and some participants

have not acknowledged the decision. This situation is handled in a manner similar

to the previous one.

The fourth situation is when a participant has timed out and it does not have

any pending acknowledgments (i.e., all operations have been acknowledged). In this

case, the participant inquires both the EC and the CC about the status of the trans-

action. While in this situation, a participant may receive one out of twelve di�erent

combinations of responses as shown in Table 3. A No{response in the table indicates

that a participant did not receive a response from a coordinator during a speci�ed

amount of time while a No{info indicates that the responding coordinator has no rec-

ollection about the transaction at the time it has received the inquiry message from

the participant. A Still{active response from an EC indicates that the transaction

is still active at other sites and no �nal decision has been made regarding its �nal

outcome. The rest of responses in the table are self explanatory.

In Table 3, response combinations numbered 1 to 4 indicate to the participant that

the transaction has been committed. For example, response combination 2 indicates

that the transaction has been committed even though no response is received from its

68

Table 3 Responses to a communication failure.

No. EC Response CC Response Participant Conclusion

1 Commit No{response Commit

2 No{response Commit Commit

3 Prepared Commit Commit

4 Commit Commit Commit

5 No{info No{response Abort

6 No{info No{info Abort

7 No{response No{response Wait

8 Prepared No{response Wait

9 Still{active No{response Wait

10 No{response No{info Wait

11 Prepared No{info Wait

12 Still{active No{info Wait

EC, thereby, a participant is not blocked as it would have been the case in the basic

IYV. Response combinations 5 and 6 indicate to the participant that the transaction

has been aborted because it is not possible for an EC to forget about a committed

transaction without receiving commit acknowledgments from all participants. Since

it is not possible for a participant to inquire about the transaction if the transaction

has been committed and the participant has already acknowledged the commitment

of the transaction, the only remaining possibility is that the transaction has been

aborted which is the right conclusion for a participant to make when it receives a

No-info from the EC. The rest of the response combinations (i.e., 7 to 12) indicate to

the participant that it cannot do anything regarding the transaction except to wait

until it receives further instructions form either the EC or CC.

The �fth situation is when a participant times out and it has a pending ac-

knowledgment. That is, the participant realizes that a communication failure has

occurred with the EC before acknowledging an operation pertaining to a transaction.

In this case, the participant may abort the transaction. Similarly, an EC may abort

69

a transaction if it times out without receiving an operation acknowledgment from a

participant.

4.2.2.2 Participant Failure. During its recovery process, a participant sends

recovering messages to all (EC and CC) coordinators in the system and creates a

non-responding coordinators list (NRCL). As in IYV, a recovering message contains

the LSN associated with the latest record written into the participant's stable log

as well as the value of the participant's time clock (i.e., the restart time). While

waiting for the reply messages to arrive, the participant starts the undo phase by

undoing the e�ects of each aborted as well as each partially executed transaction,

i.e., each transaction without a commit record in its own log. Once the undo phase

is completed, the participant starts the redo phase by redoing all transactions that

have been committed prior to the failure according to its log. Then, the participant

blocks awaiting the reply messages to arrive from the coordinators.

When an EC receives the recovering message, it responds with a message that

contains all the redo log records with LSNs greater than the one received in the recov-

ering message for each prepared to commit, committed and still active transaction.

For each still active transaction, the EC also includes all the read locks held by the

transaction at the participant prior to the failure. The EC also indicates, in its repair

message, which transactions are in their prepared to commit states (even though a

prepared to commit transaction might not have redo log records with LSNs greater

than the one received from the participant), which transactions have been commit-

ted and which transactions are still in their active state. Then, the EC waits for an

acknowledgment message from the participant before it can submit any further op-

erations for execution to the recovering participant. If the recovering participant has

not participated in any of the prepared to commit, committed or active transactions

at the EC, the EC acknowledges the recovering message of the participant, implying

to the participant that there is nothing for you to consider during recovery. This

message indicates to the participant that it has recorded in its log and acknowledged

the commitment of all transactions initiated at the EC prior to the failure.

70

Table 4 Responses to a site failure.

No. EC Response CC Response Participant Conclusion

1 No{response No{response Block

2 Commit No{response Redo and commit

3 No{response Commit Redo and commit

4 Prepared Commit Redo and commit

5 Commit Commit Redo and commit

6 Prepared Nothing for you Abort

7 Nothing for you No{response No recovery actions needed

8 No{response Nothing for you No recovery actions needed

9 Nothing for you Nothing for you No recovery actions needed

10 Prepared No{response Redo and wait

11 Still{active No{response Redo and wait

12 Still active Nothing for you Redo and wait

Similarly, when a CC receives a recovering message from a recovering participant,

it responds with a message that contains all the redo log records of committed trans-

actions that have LSNs greater than the one received from the participant. The CC

also indicates which transaction have been committed and that the participant did

not acknowledge its commitment prior to the failure. This is also the case even if the

transaction did not have any redo log records associated with LSNs greater than the

one contained in the recovering message. If each committed transaction that the par-

ticipant has participated in its execution has been acknowledged prior to the failure,

the CC acknowledges the recovering message that it has received from the partici-

pant. The CC also updates its FTSL to re
ect the time at which the participant has

restarted and force writes the list into the stable storage prior to acknowledging the

recovering message that it has received from the participant.

As shown in Table 4, there are twelve possible response combinations that a recov-

ering participant may receive from each pair of EC-CC coordinators. We represent

these response combinations, in the table, on a per transaction basis for ease of ex-

71

position even though a reply to a recovering message from a coordinator may include

status information that pertain to more than one transaction. As the table shows,

there is only a single response combination out of the twelve possible combinations

where a recovering participant is blocked (i.e., the �rst row in the table). Thus, un-

like the case in IYV, a recovering participant does not block in the case of a single

coordinator failure.

When a recovering participant receives a message in response to its recovering

message from a coordinator, the participant extracts the control information con-

tained in the message and updates its log and lock table accordingly. For example,

response combination number 2 indicates to the participant that the transaction has

been committed. Therefore, the participant uses the redo log records contained in the

response of the EC to repair its log if there are any missing log records for the com-

mitted transaction from its log. Similarly, response combination number 11 allows

the participant to repair its log as well as its lock table to re
ect the read locks that

were held by the transaction prior to the failure and forward recover the transaction.

When the participant receives a reply message from a coordinator, it removes the

coordinator from its NRCL. If the coordinator is an EC, the participant sends back

an acknowledgment message indicating to the EC that it has responded in a timely

manner before the redo phase has �nished. Therefore, the EC updates the BTV

of each still active transaction to re
ect the restart timestamp of the participant

so that the transaction will not subsequently get aborted by the CC because its

begin timestamp is less than the participant most recent failure timestamp. That

is, since each CC will update its FTSL to re
ect the failure of the participant, an

active transaction will be aborted by the CC if its timestamp is not updated by its

EC. Therefore, an EC updates the timestamp of each active transaction at its site

once it receives an acknowledgment from the recovering participant. The recovering

participant �nishes its recovery process only when it receives a reply from either the

EC or the CC for each pair of EC{CC coordinators. This is the minimum number of

replies that allow a recovering participant to �nish its recovery process. Otherwise,

the participant suspends its recovery process.

72

Once the minimum reply messages arrive, the participant continues its redo phase

and re-builds its lock table. Once the redo phase is �nished, the participant resumes

its normal processing. During normal processing, if the participant receives an op-

eration message from an EC or a commit message from a CC that are still in its

NRCL, the participant declines to execute the operation and sends back a decline

message that contains the most recent participant failure timestamp. The decline

message is interpreted by the coordinator to mean that it has not responded in a

timely fashion to the most recent participant site failure. If the message is received

by an EC, the EC ignores the timestamp contained in the message and aborts all

active transactions that have performed update operations at the participant's site.

This is because the participant has already recovered and aborted each such trans-

action based on a nothing for you reply message from the associated CC. For each

transaction that has performed only read operations at the participant's site, the EC

aborts the transaction only if it attempts to access (i.e., read or write) any data object

at the participant. That is, a transaction that has performed only read operations

is not aborted if it does not send any operation to be performed at the participant's

site after the participant has recovered. This is because it does not matter whether

the read{only transaction is committed or aborted at the participant's site as long as

it preserves serializability. Since the transaction was serializable prior to the partici-

pant's failure (using S2PL), it can be committed as long as it does not submit a new

operation for execution that might consequently violate serializability. Once the EC

has acted upon the decline message, it includes an acknowledgment
ag in the next

operation it sends to the participant. When the participant receives an operation

with an acknowledgment
ag, it removes the EC from its NRCL and executes the

operation, knowing that the EC has complied with its decline message.

If on the other hand, the decline message is received by a CC, the CC updates its

FTSL and force writes the list into stable storage. Then, the CC re{sends any commit

operation that has been declined by the participant including, as in the case of an

EC, an acknowledgment
ag that indicates to the participant that the coordinator

has updated its FTSL and it can be removed from the participant's NRCL.

73

4.2.2.3 Coordinator Failure. During its recovery after a site failure, an EC

aborts each transaction without a prepare log record and forgets the transaction. On

the other hand, for each transaction with a prepare log record, the EC inquires its

associated CC. If the CC has decided to commit the transaction, the CC responds

with a commit message and waits for the acknowledgment of the EC. If the CC does

not remember the transaction, it presumes that the transaction has been aborted

and tells the EC by sending back an abort message. Recall that IYV is based on the

presumed abort protocol.

In the event of a CC site failure, the CC re-builds its FTSL and protocol table

during its recovery using its own log. After adding each transaction with a commit

record but without a corresponding end log record into the protocol table, the CC

sends a commit message to each participant in the execution of each transaction

including the transaction's EC. Once the required acknowledgments arrives, the CC

writes a non-forced end record and forgets the transaction.

In the next section, we discuss the correctness of the assumptions behind the

design of IYV and its IYV-WCC variant and explain, further, the need for propa-

gating the read locks held at a participant site by a transaction to the transaction's

coordinator.

4.3 Correctness of IYV Protocol Assumptions

The essence of 2PC that ensures the atomicity of a distributed transaction is

that it prevents a transaction from unilaterally committing or aborting at a site

while it is in the prepared to commit state. A participant may be required to abort

a transaction either for correctness reasons, such as ensuring serializability, or for

performance reasons, such as minimizing transaction blocking. Regarding the latter,

given that transactions are �nite, we assume that a participant does not abort a

74

transaction because it has not received an operation from the transaction for some

time. It is the responsibility of the coordinator to decide whether or not it is necessary

to abort a long-executing transaction.

As mentioned in Chapter 2, most commercial database management systems use

strict two-phase locking (S2PL) for concurrency control and physical write-ahead

logging (WAL) for recovery. Now, consider a distributed system in which all the sites

employ S2PL. In such a distributed system, participants never abort transactions

to ensure atomicity and only abort transactions in active state, (transactions having

outstanding operation acknowledgments,) to resolve deadlocks.

Theorem 1: If each participant employs S2PL for concurrency control, it is

not possible for a transaction to be involved in a non-serializable execution, a

local deadlock at a participant, or a global deadlock when all the operations that

were submitted by the transaction to the participants have been executed and

acknowledged.

Proof: The proof proceeds by contradiction. Assume that all the operations

submitted by a transaction have been executed and acknowledged and the trans-

action is involved in (1) a non-serializable execution or (2) a deadlock.

According to the S2PL rules, an operation submitted by a transaction is exe-

cuted only after the locks required for the execution of the operation on the data

items are acquired. This rule implies that an operation is not acknowledged until

after the required locks for the execution of the operation are acquired.

The �rst part (1) contradicts the fact that S2PL schedulers produce serializable

histories

(5)

. If the transaction is involved in a non-serializable execution, at

least one of its operations would have been blocked rather being acknowledged

which contradicts the assumption that all the transaction's operations have been

executed and acknowledged.

The second part (2) contradicts the fact that if a transaction is involved in a

deadlock, at least one of its operations is blocked awaiting to hold some locks on

some data items which again contradicts the assumption that all the operations

pertaining to the transaction have been acknowledged. 2

75

Corollary 1: A local deadlock at a participant site that employs S2PL involves

only active transactions (i.e., transactions with pending operations).

Proof: As above, the proof proceeds by contradiction. For a deadlock to occur,

the hold-and-wait condition must exist. If we assume that a transaction is involved

in a local deadlock at a participant site after all the operations submitted to the

participant have been executed and acknowledged, it means that the transaction

is holding locks on some data items and is waiting to hold locks on other data

items. However, since all the operations of the transaction have been executed and

acknowledged by the participant, all the locks required for the execution of the

operations submitted to the participant have been acquired. Hence, the hold-and-

wait condition cannot exist after all the operations submitted by a transaction

to a participant have been acknowledged and a local deadlock can only involve

active transactions. 2

Note that participants using an optimistic concurrency control protocol (which we

mentioned in Chapter 2) do not exhibit the above property. That is, they might abort

a transaction even though the transaction is not in an active state in order to ensure

serializability

(5)

. Hence, IYV and its IYV-WCC variant are not applicable in this

case. On the other hand, it can be shown, as in Theorem 1, that participants using

a pessimistic concurrency control protocol (other than S2PL) that avoids cascading

aborts never abort transactions to ensure atomicity and only abort transactions in

active state to ensure serializability or to resolve deadlocks. However, in this disser-

tation, we are considering only S2PL combined with physical WAL because of the

wide acceptance of this combination.

As discussed above, recovery in IYV is based on the traditional Undo/Redo

schemes in which the undo phase precedes the redo phase because it allows the

analysis phase at a participant that involves communication with the coordinators

to proceed concurrently with the undo phase and potentially part of the redo phase.

This is not possible in the case of recovery schemes such as ARIES

(28)

, in which the

redo phase precedes the undo phase. In the case of a recovery scheme where the redo

76

phase precedes the undo phase, a participant is blocked and cannot initiate recovery

until it receives responses from the required coordinators (i.e., all coordinators in

the system in the case of IYV). That is, IYV and IYV-WCC can incorporate such a

recovery scheme but it will not o�er the same e�ciency during recovery in this case.

Now, let us also make the need for replicating the read locks that are held by the

transactions at the coordinators' sites clear, a need which allows the support of for-

ward recovery without violating consistency. Assume that we have two transactions

T

1

and T

2

, submitted at two di�erent coordinators. T

1

reads data item x, writes data

item y and then commits, whereas T

2

writes both data items x and y, and then com-

mits. Here, r

i

[x] (w

i

[x]) denotes a read (write) operation performed by transaction

T

i

on item x and c

i

denotes the commit primitive of T

i

.

T

1

: r

1

[x] w

1

[y] c

1

T

2

: w

2

[x] w

2

[y] c

2

Furthermore, assume that the �rst operation of T

1

, r

1

[x], has been executed suc-

cessfully and acknowledged. After that, the participant where the data items are

stored fails. The resulting history of execution is as follows:

H

1

: r

1

[x] Crash

At this point, assume that the participant has received acknowledgment messages

in response to its recovering messages from all coordinators including the coordinator

of T

1

which has indicated that T

1

is still active in its acknowledgment message. Based

on these replies, the participant �nishes its recovery procedure using its own log and

knowing that T

1

is still in progress but there is no redo actions that are needed to be

used with this transaction since the transaction has performed only a read operation.

Now, if we allow T

1

to forward recover after the participant has recovered without

being able to reconstruct the exact lock table of the participant as it was before the

failure, we might end up with the following non-serializable history.

77

H

2

: r

1

[x] w

2

[x] w

2

[y] c

2

w

1

[y] c

1

H

2

is not serializable because it is cyclic (i.e., T

1

!T

2

!T

1

) (as we discussed in

Chapter 2). H

2

is possible because the participant after loosing its lock table, could

not re-acquire the read lock on x on behave of T

1

as it was the case prior to the failure,

allowing T

2

to acquire a write lock and change x after the participant has recovered.

Once T

2

has committed, the participant receives a new operation pertaining to T

1

that also modi�es the value of x. Since T

2

has already committed and all its locks

has been released, T

1

can acquire a write lock on x and modi�es it, resulting in a

non-serializable execution. However, duplicating the read locks at the coordinators

in IYV and its IYV-WCC variant allows a participant to re-build its lock table after

a failure and to prevent execution histories similar to the one described above from

occurring.

Here, it should be pointed out that a transaction always executes at the site of

its coordinator. Thus, forward recovery is only possible in the case of participants'

failures. A transaction cannot be forward recovered in the case of the (execution)

coordinator's site failure because the state of the transaction (i.e., the program state

which includes all local variables) is lost and cannot be restored, whereas the state

and control information of the database at a participant can be restored with the

help of the coordinator.

4.4 Comparison between IYV Protocol and the other Atomic Commit

Protocols

IYV combines the advantages of UV, EP, and CL protocols (that we discussed in

Chapter 3). Here, we compare IYV with these protocols and in particular with CL

which shares the same basic idea with IYV in order to eliminate the voting phase of

2PC and to reduce the number of log force writes.

To avoid force writing the log records that are generated during the execution of

each and every operation prior to acknowledging them, UV assumes that each site

78

knows when it has executed the last operation on behalf of a transaction

(35)

. As we

discussed in Section 3.2.5, this means that the coordinator either submits to a site all

the operations at the same time (which is a form of predeclaration) or indicates to the

participant the last operation at the time that the operation is submitted. The former

is possible in very special cases. The latter is only possible if each transaction has

knowledge about the data distribution in the system and indicates to the coordinator

the last operation to be executed at a participant.

In contrast to UV, IYV does not make any assumption about the structure of

transactions and does not assume any knowledge by the transactions about the data

distribution. Thus, IYV is more general compared to UV. In the special cases in

which UV is applicable, IYV and UV would exhibit similar behavior during normal

processing.

In EP which is derived from PrC, the number of forced log writes pertaining to a

transaction is equal to the number of the participants that executed the transaction

since EP requires the identities of the participants to be explicitly recorded at the

coordinator's log in a forced initiation log record. This is because an initiation log

record has to be forced written each time a new participant is about to execute an

operation of the transaction. In contrast, in IYV, a coordinator does not force write

any initiation record.

To alleviate the drawback of the initiation records of EP, CL uses distributed

write-ahead logging (DWAL) (as we discussed in Section 3.2.5). In the case of CL,

since a participant might inquire a coordinator about the latest forced log write

(i.e., to ensure the DWAL), CL might become very costly and less e�cient when

compared with any of the 2PC variants. Consider the case when a number of long-

living transactions execute at a participant without excessive main memory. In this

case, the participant might request a transaction's coordinator (explicitly) to force

write its log more than once resulting in a great number of sequential messages.

Also, rolling back aborted transactions has to be performed completely over the

network. This means that when a participant aborts a transaction, it cannot release

the resources held by the transaction until it communicates with the transaction's

79

coordinator and receives the undo log records pertaining to the transaction, which is

a signi�cant overhead.

Another problem with CL is that the log records of transactions cannot be garbage

collected by the coordinators and have to be remembered forever. This situation is

similar to NPrC which also eliminates the initiation records that are required by

PrC. However, a novel global garbage collection procedure is combined with NPrC

to alleviate this drawback. In CL, garbage collection is given up for committed

as well as aborted transactions even though abort decisions are acknowledged by

the participants. (In this case, there is no actual bene�t from the acknowledgment

messages except that they contain the undo log records of aborted transactions.

Notice that the underlying recovery scheme, in CL, is ARIES in which an undo is an

operation that has to be performed logically and which will generate a compensation

log record (CLR) that needs to be logged, too.)

Another signi�cant di�erence between IYV and CL is the case of a coordinator's

recovery after a failure. A coordinator in IYV can recover independently without

communicating with any participant. In contrast, a recovering coordinator, in CL,

has to communicate with all possible participants in the system in order to determine

the set of unknown transactions in order to abort them instead of presuming their

commitment since CL is a descendant from PrC protocol

(36; 9)

. Furthermore, a

recovering participant in CL has to wait until it receives all the log records from

the coordinators and until all active transactions have been decided upon. In IYV,

however, using the \still active" message, a participant can recover its state up to the

point prior to its failure and resume its normal processing without having to wait until

all active transactions have been decided upon, allowing long-living transactions to

forward recover and resume their execution. Aborted transactions in IYV are handled

locally by a participant without any communication with the coordinators (i.e., the

undo log records do not have to be requested from the coordinators).

Even though IYV requires that the redo log records generated during the exe-

cution of a transaction's operation be logged both at its coordinator as well as at

the participant that executed the operation, such a duplicate logging should incur

80

negligible overhead because the log records are written in a non-forced manner and

without involving any extra coordination messages. The only overhead is that IYV

requires more bu�er space for the log of the coordinator so that logging do not cause

frequent
ushing to the log bu�er. As mentioned earlier, we believe that, in general,

the overhead associated with the duplication of logs and the extra information con-

tained in the commit and still-active messages is well o�set by the reduction in the

number of sequential coordination messages and the gain of being able to support

forward recovery of interrupted, possibly long-lived, transactions due to participant

and communication failures.

It should be pointed out that not forcing commit records at the participants in

IYV di�ers from the group commit optimization in two ways. First, there is no notion

of a group or a timer that determines when a force should take place. Second, group

commit trades o� performance during normal processing for increased blocking after

a failure whereas in IYV the blocking of a site is the same irrespective of whether

commit records are forced or not. This is because, in IYV, a participant cannot

determine all transactions that were active at its site prior to a failure or their �nal

status without contacting all coordinators in the system.

4.5 Analytical Evaluation

In this section, we use the same traditional analytical method that we used in

Section 3.2.8.1 to evaluate the performance of IYV and IYV-WCC. We also compare

their performance with the performance of 2PC, PrA, PrC, EP and CL, that we

discussed in Chapter 3. This method, as we mentioned earlier, is based on evaluating

the log, message and time complexities. However, we will tabulate the performance

results di�erently in order to re
ect the sequentiality of the overhead associated with

the three performance metrics on the performance of the di�erent protocols.

In our evaluation, we use best (ideal) and worst case scenarios

(36; 9)

to highlight

the performance di�erences among the various ACPs. Also, we consider the number

of coordination messages and forced log writes that are due to the protocols only

81

(e.g., we do not consider the number of messages that are due to the operations and

their acknowledgments). The cost of the protocols in both scenarios are evaluated

during normal processing and in absence of failures.

Figure 13 graphically illustrates the sequence of coordination messages and forced

log writes involved in 2PC, IYV and IYV{WCC to reach a decision point and to

release the resources held at the participants for the commit as well as the abort

case. The �gure shows how we will evaluate the performance of the ACPs that we

listed above, considering the sequential e�ects of coordination messages and forced

log writes.

Tables 5 and 6 compare the di�erent protocols under the worst case scenario. It

should be pointed out that this \worst" case scenario is very close to the expected

average behavior of transactions and the distributed environment. This is because the

assumptions that we make in this case are more realistic than the assumptions that

we make in the best case scenario. We denote by n the number of participants that

executed a transaction and by d the number of data items that have been accessed

by the transaction. In this scenario, we assume the following:

� A transaction has more than one write operation at each participant it accesses

(i.e., d > n).

� Transactions execute serially (e.g., an operation is submitted by a transaction

only when the previous operation has been executed and acknowledged).

� The participants are not known at the beginning of transactions.

� The participants in a transaction execution do not have excessive main mem-

ories and each operation generates a single log record. This means that each

and every log record that is generated due to the execution of an operation has

to be forced written into the stable log as a worst case scenario. Note that we

do not include the number of forced log writes that are due to the operations

and which are the same in all the protocols except for EP where the log records

have to be forced written all the time. In CL, on the other hand, operations

8
2

Intention-to-commit

held by the Transaction
Release all Resources
transaction and
Commit theLog Record at the Coordinator

Log Record at the Coordinator

held by the Transaction
Release all Resources
transaction and

IYV-WCC

IYV

held by the Transaction
Release all Resources
transaction and
Abort the

IYV-WCC
(Abort by EC)

Intention-to-commit Abort the
transaction and
Release all Resources
held by the Transaction

IYV-WCC
(Abort by CC)

Indicates a message passing

Indicates a forced log write

Record at the Participants
Vote Request

Log Record at the Coordinator

held by the Transaction
Release all Resources
transaction and
Commit/Abort the

(Commit)

(Commit)

2PC

IYV
(Abort)

Commit the

held by the Transaction
Release all Resources
transaction and
Abort the

Participants’ Votes Final Decision

Abort Decision

Commit Decision

Message
Commit Decision

Abort Decision

Forced Commit

Message
Abort Decision

Force Final Commit

Forced Prepare Log Forced Final Decision

Forced Prepare Log
Record at EC

Record at EC
Forced Prepare Log

F
i
g
u
r
e
1
3
T
h
e
s
e
q
u
e
n
c
e
o
f
c
o
o
r
d
i
n
a
t
i
o
n
m
e
s
s
a
g
e
s
a
n
d
f
o
r
c
e
d
l
o
g
w
r
i
t
e
s
r
e
q
u
i
r
e
d

d
u
r
i
n
g
n
o
r
m
a
l
p
r
o
c
e
s
s
i
n
g
.

83

Table 5 Committing a transaction assuming the worst case scenario.

2PC PrC PrA EP CL IYV IYV{WCC

Log force delays 2 3 2 d+n+1 1 1 2

Total log force writes 2n+1 n+2 2n+1 d+n+1 1 1 2

DWAL Message delays 0 0 0 0 2d 0 0

Message delays (Commit) 2 2 2 0 2d 0 1

Message delays (Locks) 3 3 3 1 2d+1 1 2

Total messages 4n 3n 4n n 2d+n 2n 3n+3

Total messages with 3n 3n 3n n 2d+n n n+2

piggybacking

Table 6 Aborting a transaction assuming the worst case scenario.

2PC PrC PrA EP CL IYV IYV{WCC

EC CC

Abort Abort

Log force delays 2 2 1 d+n 0 0 0 1

Total log force writes 2n+1 2n+1 n d+2n 0 0 0 1

DWAL Message delays 0 0 0 0 4d 0 0 0

Message delays (Abort) 2 2 2 0 2d 0 0 1

Message delays (Locks) 3 3 3 1 4d+1 1 1 2

Total messages 4n 4n 3n 2n 4d+n 2n n n+2

Total messages with 3n 3n 3n n 4d+n n n n+2

piggybacking

add extra overhead because each force write is explicitly associated with two

messages due to the distributed write ahead logging (DWAL).

The rows labeled \Log force delays" contain the sequence of forced log writes that

are required by the di�erent protocols up to the point that the commit/abort decision

is made. The rows labeled \Message delays (commit/abort)" contain the number of

sequential messages up to the commit/abort point, and the rows labeled \Message

delays (Locks)" contain the number of sequential messages that are involved in order

to release all the locks held by a committing/aborting transaction. For example, in

Table 5 , the \Log force delays" for the 2PC protocol is two because there are two

force log writes between the beginning of the protocol and the time a commit decision

84

is made by a transaction's coordinator, as shown in Figure 13. Also, \Message

delays (Commit)" and \Message delays (Locks)" are 2 and 3 respectively, because

the 2PC involves two sequential messages in order for a coordinator to make its

�nal decision regarding a transaction (i.e., the �rst phase of the protocol), and three

sequential messages to release all the resources (i.e., locks) held by the transaction

at the participants. In the row labeled \Total message with piggybacking", we apply

piggybacking of the acknowledgments of the decision messages, which is a special case

of the lazy commit optimization that we discussed in Section 3.2.7, to eliminate the

�nal round of messages.

It is clear from Tables 5 and 6, that IYV and CL outperform all other 2PC variants

with respect to the number of log force delays to reach a decision as well as the total

number of log force writes. For the commit case, the two protocols require only one

log force write whereas for the abort case neither IYV nor CL force write any log

records. In this respect, EP is the most expensive of all protocols while IYV-WCC

has the same log force delays complexity as 2PC and PrA but less by an order of n

in the total log force complexity compared to 2PC, PrA and PrC.

CL becomes more expensive than IYV and IYV-WCC when message delays and

total number of messages are considered. Due to DWAL, CL requires two explicit

sequential messages to be exchanged between a participant and the coordinator of

a transaction for each operation executed by the participant for the commit case

(thus, the 2d in \DWAL Message delays"). For the abort case, four messages are

needed to be exchanged between the participant and the coordinator of an aborted

transaction. This is because undoing an operation using the recovery scheme of CL,

ARIES, is another operation that has to be executed and logged. Since CL uses a

DWAL logging protocol, undoing an operation requires two more explicit messages to

be exchanged between the coordinator and the participant in the worst case scenario.

Note that because of its dependency on the number of data operations, CL can

potentially involve more messages to commit or abort a transaction than any of the

2PC variants in the case of long-transactions. On the other hand, with respect to

messages, IYV and EP perform better in all aspects than any other protocol. IYV-

WCC comes in the second place. For the commit case, EP incurs the least number

85

Table 7 Committing a transaction assuming the ideal case scenario.

2PC PrC PrA EP CL IYV IYV-WCC

Log force delays 2 3 2 3 1 1 2

Total log force writes 2n+1 n+2 2n+1 n+2 1 1 n+2

Message delays (Commit) 2 2 2 0 0 0 1

Message delays (Locks) 3 3 3 1 1 1 2

Total messages 4n 3n 4n n n 2n 3n+3

Total messages with 3n 3n 3n n n n n+2

piggybacking

Table 8 Aborting a transaction assuming the ideal case scenario.

2PC PrC PrA EP CL IYV IYV{WCC

EC CC

Abort Abort

Log force delays 2 2 1 2 0 0 0 1

Total log force writes 2n+1 2n+1 n 2n+1 0 0 0 1

Message delays (Abort) 2 2 2 0 0 0 0 1

Message delays (Locks) 3 3 3 1 1 1 1 2

Total messages 4n 4n 3n 2n 2n 2n n n+2

Total messages with 3n 3n 3n n 2n n n n+2

piggybacking

of total messages. This situation changes when piggybacking is considered.

Piggybacking can be used to eliminate the �nal round of messages for the commit

case in 2PC, PrA, IYV, and IYV-WCC. That is not the case for PrC, EP and CL

because a commit �nal decision is never acknowledged in these protocols. Similarly,

this optimization can be used in the abort case with 2PC, PrC, and EP but not

with PrA, CL, IYV or IYV-WCC. In PrA, IYV and IYV-WCC, an abort decision is

never acknowledged while in CL, the acknowledgment is sent immediately because it

contains the undo log records of the aborted transaction.

Table 7 and Table 8, compare the number of messages and forced log writes that

are needed to commit and abort a transaction, respectively, for the di�erent proto-

cols based on the ideal case scenario. In this ideal scenario, we make the following

assumptions:

86

� A transaction performs at most one write operation per each site it accesses

(i.e., n = d).

� The operations of a transaction execute in parallel.

� The participants are known at the beginning of transactions.

� The participants have limited main memory which causes each log record to be

forced to stable log.

In the ideal case, CL and IYV have the same cost with respect to the number of

sequential force log writes and messages for the commit case, dominating the other

ACPs with CL dominating IYV with respect to the total number of messages. When

piggybacking is considered, CL and IYV variants have exactly the same cost. For

the abort case, both CL and IYV have the same costs with respect to the number of

sequential force writes and the total number of forced log writes. Similarly, they have

the same cost considering the number of sequential and total number of messages.

Comparing the two scenarios, we note that the cost associated with EP is highly

dependent on the number of operations submitted by the transactions while CL

is also dependent on the characteristics of the distributed database system (e.g.,

the propagation latency of the communication network, the log bu�er size, and the

main memory size participants, etc.) All of these factors are due to CL's DWAL.

This makes EP and CL completely ine�cient in distributed database systems with

relatively long-living transactions where a transaction executes a large number of

operations at a small number of sites (i.e., d >> n), a situation common in advanced

distributed database applications.

With respect to IYV-WCC, Tables 5 and 7 show that, for the commit case,

IYV{WCC has increased both of the number of sequential forced log writes and

coordination messages by one, to reach a commit decision and to release the locks

held by a committing transaction, when compared with IYV. The cost of sequential

forced log writes remains the same as in 2PC and PrA, but one less than PrC. The

cost of sequential coordination messages to reach a commit point and release the locks

held by a committing transaction is less by one when compared with 2PC, PrA and

87

PrC. In the case of IYV{WCC, there are 3n+3 total messages. This is because there

are n commit messages, one for each participant, and 2n acknowledgment messages,

two from each participant. The other 3 messages are the intention to commit, the

commit �nal decision sent to the EC and the EC's acknowledgment.

For the abort case, Tables 6 and 8, the cost to abort a transaction in IYV{WCC

remains the same as in IYV when the abort decision is made by the EC. On the

other hand, the cost to abort a transaction by the CC incurs an extra sequential

coordination message to reach an abort decision as well as to release the locks held

by the aborting transaction. Notice that if a transaction is to be aborted, it will be

aborted by its EC rather than the CC in the absence of failures. Hence, the cost

of aborting transactions, in the absence of failures, remains the same as in IYV, the

best alternative.

Figure 14 compares the cost associated with 2PC, IYV and IYV{WCC during

the recovery process of a participant. After the analysis and the undo phase of the

recovery procedure, both IYV and IYV{WCC incur a bounded delay in the case

that all coordinators respond to the recovering inquiry messages during the recovery

process of a participant. This delay increases the time required for the recovery

procedure in IYV and IYV-WCC when compared with the 2PC, which does not

require any coordinator's response for a participant to become operational after a

failure. However, the extra recovery time required in IYV and IYV{WCC will be, at

least partially, o�set by the ability of the two protocols to forward recover any still

active transaction at the coordinators. In the case that a participant encounters a

failed coordinator during its recovery process in IYV, the participant will suspend

its recovery for an unbounded amount of time until the coordinator has recovered.

In IYV-WCC, on the other hand, a participant will be able to recover and become

operational again within a bounded delay as long as one of the coordinators in each

EC-CC pair is still operational during the recovery process of the participant.

8
8

Repair log
and lock table

Un-bounded time

Analysis Phase
AND

Inquire about in-doubt
transactions

transactions
Accept new

Undo Phase Redo Phase
(Redo committed transactions)

and lock table
Repair log

in case of a coordinator
failure

bounded time
in case of a coordinator

failure

Accept new
transactions

Accept new
transactions

executed transactions)
(Undo aborted and partially

Undo Phase

executed transactions)
(Undo aborted and partially

Undo Phase

Inquire coordinators

Inquire coordinators
AND

Analysis Phase

Analysis Phase
AND

(Redo committed and still active transactions)
Redo Phase

(Redo committed and still active transactions)
Redo Phase

(Undo aborted and partially
executed transactions)

IYV-WCC

IYV

2PC

F
i
g
u
r
e
1
4
T
h
e
a
m
o
u
n
t
o
f
t
i
m
e
r
e
q
u
i
r
e
d
t
o
b
e
c
o
m
e
o
p
e
r
a
t
i
o
n
a
l
a
f
t
e
r
a
f
a
i
l
u
r
e
.

89

4.6 Summary

In this chapter, we presented implicit yes-vote protocol (IYV), a new ACP for fu-

ture gigabit-networked distributed databases. IYV exploits the semantics of (1) strict

two-phase locking of the database management mechanisms and (2) the character-

istics of gigabit-networks to enhance performance over the other well known ACPs.

IYV reduces the cost of commit processing during normal operation and, after a

participant failure, it allows partially executed transactions at the failed participant

that are still active in the system to resume their execution after the participant has

recovered, a situation that is not possible in any other ACP.

To reduce the blocking aspects of IYV in the presence of less reliable sites, we

also developed the implicit yes-vote with a commit coordinator (IYV-WCC) atomic

commit protocol. As in IYV, IYV-WCC allows forward recovery of transactions

while at the same time it enhances independent recovery compared with IYV at the

expense of extra coordination messages and forced log writes. This makes it suitable

in the presence of less reliable database sites. The performance enhancement in both

protocols is achieved through a low-cost partial replication of each participant's log

and lock table at the coordinators' sites.

To highlight the performance enhancement of our new protocols, we compared

the performance of IYV and IYV-WCC to the performance of other known protocols

based on the traditional analytical method. This method is based on evaluating the

performance of the di�erent protocols under worst and ideal case scenarios. Our

evaluations reveals that the performance of our proposed protocols is very promising.

In the next chapter, we evaluate the performance of the di�erent protocols based on

a simulation model to better establish both the relative and absolute performance

enhancements of our IYV protocol compared to the other well known protocols.

Even though IYV seems to be a very promising protocol with respect to per-

formance, it should be noted that it is not always applicable. First, it cannot be

applied in systems that supports deferred consistency constraints validation (e.g.,

SQL triggers

(6)

) because it eliminates the (explicit) voting phase of 2PC. However,

90

in these systems, some integrity constraints are validated at commit time of trans-

actions which require from a coordinator to explicitly request the participants in

a transaction's execution to prepare to commit the transaction by validating any

deferred integrity constraints. Second, IYV cannot be used in resource-constrained

systems (e.g., low bandwidth networks, small main memory or high cost disk access

systems). This motivates us to search for another alternative ACP that can be used

when IYV is not applicable and to revisit PrA and PrC protocols. Before we present

the results of our investigations in this direction, which is the topic of Chapter 6,

let us �rst evaluate the performance of IYV, CL, PrA and PrC based on simulation,

which constitutes the second contribution of this dissertation and the topic of the

next chapter.

91

5.0 PERFORMANCE OF ATOMIC COMMIT PROTOCOLS IN

GIGABIT-NETWORKED DATABASE SYSTEMS

Although the traditional method of performance evaluation has been useful in an-

alyzing the best and worst case scenarios as we showed in Chapter 4, it can neither be

used to completely characterize the respective e�ciency of the implicit yes-vote (IYV)

and coordinator log (CL), nor provide a basis to compare them with other atomic

commit protocols. This is because the performance impact of these protocols on a

system's performance depends on many factors including the propagation latency of

the communication network, the log bu�er size and the percentage of the
ushing of

data from main memory to the stable storage. Furthermore, the traditional method

of performance evaluation fails when one attempts to capture the magnitude in the

impact of one ACP versus another on a system's overall performance. For this reason,

we have implemented a comprehensive simulator for a distributed database system in

order to study the performance implications of atomic commit protocols on transac-

tion throughput under di�erent system con�gurations and transaction behaviors

(72)

.

In this chapter, based on our simulation results, we report on the performance

implications of the two-phase commit (2PC) protocol and its most commonly known

two variants (namely, presumed abort (PrA) and presumed commit (PrC)), as well

as CL and IYV protocols, on transaction throughput in wide-area, gigabit-networked

distributed database systems. In contrast to other recent comparative performance

evaluations of two-phase commit variants in local area networks

(18; 19)

, we explicitly

model (1) the propagation latency of the communication network, (2) the overhead of

the management of the database bu�er and of
ushing the transaction and protocol

execution log records and (3) the overhead of recovery from site failures. Previous

studies did not consider these aspects based on the belief that these aspects should

not a�ect the relative performance of the common 2PC variants. On the other hand,

our results show that these aspects do have a direct impact on the performance of

IYV and CL. Previous studies have also adopted a parallel model of execution of

92

transactions' operations at the participant sites. In our study, we adopt the more

realistic sequential execution model of the operations of transactions since transac-

tions, being programs that are usually written in ad hoc fashion, have behaviors that

cannot be determined a priori

(4)

with respect to either their execution patterns or

the sites participating in their execution.

Since read-only transactions are the majority of transactions in general database

systems, we also study the performance gains when the traditional read-only (which

we discussed in Section 3.2.7) and unsolicited update-vote (which we present in the

next chapter (Section 6.6)) optimizations are incorporated into the �ve protocols

evaluated. To isolate the impact of ACPs on the overall performance of the system,

we also simulate the behavior of the system when distributed-execution centralized-

commit (DECC) is used. As in a previous study

(19)

, DECC simulates the distributed

execution of operations and centralized commit processing (i.e., no ACP is used).

Though arti�cial, DECC allows us to evaluate the highest attainable system perfor-

mance in the absence of failures. In this way, we can better relate the performance

enhancement of ACPs and optimizations to the highest attainable performance while

at the same time comparing their performance to each other.

Our results are based on the assumption that a transaction will commit when

it reaches its commit point. That is, in the absence of site failures, a participant

always votes \yes" for a transaction during the course of commit processing. Salient

results of our study show that IYV is, in general, better than all the other evaluated

protocols during both normal processing and in the presence of one or two failed sites

at any given time. IYV is matched by CL under some circumstances whereas, under

others, CL is the worst among all the evaluated protocols. Interestingly, with respect

to the two-phase commit variants, the choice of a protocol has very little impact

on performance for the case of long transactions as opposed to short ones. Further,

performance enhancements due to a read-only optimization are more pronounced

with short transactions. Finally, we show that there is a cross-over point between

the performance curves of presumed abort and presumed commit protocols even

under the assumption that all transactions are to be committed when they reach

their commit points. This result cannot be shown using the traditional method of

93

performance evaluation which we used in Section 3.2.8.1, showing that presumed

commit protocol is, in general, better than presumed abort protocol.

The rest of the chapter is structured as follows: In Section 5.1, we present our

simulation system model and its associated parameters. In Section 5.2, we present the

results of our study during normal processing and in the absence of failures whereas

in Section 5.3, we present the results in the presence of failures.

5.1 Simulation System

In this section, we discuss our simulation system model and its parameters. We

also discuss the transaction execution model and the workload model. We have

implemented our simulator in C using the CSIM simulation library (by Mesquite

Software Inc.) on a UNIX Ultra SPARC workstation.

5.1.1 Simulation System Model

We modeled our system in a manner similar to other database simulation mod-

els

(73; 74; 75; 19)

. Table 9 contains our simulation model parameters which we divide

them into four logical sets of parameters: (1) database parameters, (2) transaction

parameters, (3) site parameters and (4) resource parameters.

In our model, a database is a collection of objects that are uniformly distributed

across a number of sites without data replication. A data object in our model is

uniquely identi�ed by the tuple < Site

id

, Object

No

>. The database parameters

which are the number of sites (NumSites) and objects (NumObjs) are speci�ed as

parameters to the simulating system.

The sites are interconnected via a high speed wide-area communication network.

The propagation latency (PropLatency) of the network is speci�ed as a resource

parameter.

94

Table 9 Simulation parameters.

Database Parameters

1. NumSites The number of database sites

2. NumObjs The number of data items per database site

Transaction Parameters

3. ExecPattern Sequential

4. DistDegree Number of participants

5. ParticipantSize Transaction's average access per participant

6. ThinkTime Think time between database operations

7. PercRead-OnlyTrx percentage of read-only transactions

Site Parameters

8. NumCPUs Number of CPUs

9. NumDisks Number of disks

10. MPL Degree of multiprogramming per site

11. HitRate Bu�er pool hit probability

12. LogFlushRate Log pool
ush probability due to WAL

13. LogSize Maximum log bu�er size in pages

14. TBF Time between failures

15. TTR Time to repair

Resource Parameters

16. CPUTime(MESG) CPU Time for processing a message

17. CPUTime(READ) CPU Time for processing a read operation

18. CPUTime(WRITE) CPU Time for processing a write operation

19. DiskTime Disk access time

20. DiskTransfTime Page transfer time

21. PropLatency Propagation time for a message

22. Timeout Message timeout

95

Each site in our system consists of (1) a transaction manager (TM), (2) a data

manager (DM), (3) a lock manager (LM), (4) a communication manager (CM), (5)

a resource manager (RSM), (6) a database cache manager (DCM) and (7) a recovery

manager (RM).

At a site, the TMmanages transaction identi�ers, dispatches operations for execu-

tion to the appropriate DMs and coordinates the commit processing for transactions

initiated at its site. A TM maintains its own log for those transactions that it coor-

dinates.

A DM receives operation requests from both the local TM and remote TMs,

accesses the resources necessary to ful�ll these requests, acknowledges the requesting

TM upon the completion of the request, and participates in the commit processing

of those transactions that have performed operations at its site. A DM maintains

a log for all database operations that it executes and for transactions in which it

participates in their commitment.

For concurrency control, we use strict two-phase locking, that we brie
y discussed

in Chapter 2, the de facto standard of the industry. A LM at a site is responsible

for the granting and releasing of locks at its site in accordance to the used ACP.

If the lock manager cannot satisfy a request for a lock on a data object, the re-

questing transaction is immediately aborted. Through immediate abort (which is

also called immediate-restart

(73)

), deadlocks are avoided since transactions never

wait for requested locks to be released. This deadlock avoidance strategy simpli-

�es the simulation model without a�ecting the relative performance of the evaluated

protocols.

A RSM is a logical entity the represents the set of physical resources available

at any given site. Access to all physical resources within a site is served on a �rst-

come-�rst-serve (FCFS) basis without any preference to the type of service requested

from a resource. In our system, the physical resources available at a site consists

of a number of CPUs (NumCPUs) and disks (NumDisks). All CPUs within a

site share a common queue and are responsible for the processing of messages and

96

database operations. When a message is received or about to be sent by a CM,

it consumes some CPUTime(MESG) of CPU time. Furthermore, the receipt of

a message may require additional CPU time. For example, receiving a message

requesting a database operation will require CPUTime(READ) of CPU time for a

read operation, or CPUTime(WRITE) for a write operation. Additionally, some

messages will be need to be acknowledged requiring another CPUTime(MESG) of

CPU time.

At a site, there are one or more disks dedicated to storing data, and separate disks

dedicated to storing the logs. The RSM maintains a separate queue for each disk at

its site. For log disks, the log bu�er may be limited to LogSize. When the log bu�er

reaches LogSize, the log bu�er must be
ushed to disk. The cost of
ushing to or

reading from disk is represented by the access time (DiskT ime), and a transfer rate

(DiskTransfT ime) for each page moved to/from the disk. Thus, the cost associated

with disk services can be summarized as follows:

Cost(Disk) = DiskT ime+ (DiskTransfT ime �NumberOfPages)

A DCM at a site is responsible for the management of the data transfer between

database cache and data disk(s). A DCM determines whether a page resides in

the database cache or needs to be fetched from the data disks based on a HitRate

parameter. Similarly, a DCM is responsible for locating an available slot in the cache

to swap the requested database page in the case of a miss. If the page to be replaced in

the cache is dirty, the page must �rst be
ushed to disk before it is replaced. However,

before
ushing the replaced page to disk, the DCM must insure that WAL has been

performed for the dirty page. Based on the LogF lushRate, the DCM determines

whether WAL needs to be performed or not. If WAL must be performed, the DCM

requests that the DM at its site
ush its log. Once the DM has
ushed its log, the

DCM
ushes the dirty page to disk and fetches the requested database page from

disk.

The RM at a site is another logical entity that captures the behavior of the site

after a failure. When failures are enabled in our simulation, they are separated by

97

time between failures (TBF) milliseconds. Once a site has failed, the site remains

down for time to repair (TTR) milliseconds in order to repair the failure. Anymessage

sent to a failed site will timeout after T imeout milliseconds. Timeouts are only used

for actual failures. That is, in our system, we incorporated a low level mechanism

that checks for a failure in the case of a timeout. Thus, transactions are not aborted

in the case that a site becomes slow due to high congestion on its resources. After

the site has been repaired, the TM and the DM at that site must recover. As part

of its recovery procedures, the TM completes commit processing for each incomplete

transaction. On the other hand, the RM consults its log and performs the necessary

undo and redo phases for aborted and committed transactions, restoring the database

state to a consistent state. For IYV and CL, the recovery process involves contacting

all other sites for recovery whereas only the coordinators of in-doubt transactions are

contacted for the other 2PC variants.

In next subsection, we describe the transaction model and the execution model

adopted in this study while in subsection 5.1.3, we describe the workload that is

applied to the system.

5.1.2 Transactions and their Execution Model

While still adhering to the traditional ACID (i.e., Atomicity, Consistency, Isola-

tion and Durability) properties of transactions, a distributed transaction is modeled

as a sequence of read and write operations that is terminated by a commit or an abort

transaction management primitive. The execution model of distributed transactions

can be either sequential, participant-sequential or parallel. In the sequential execution

model, before a transaction submits an operation, it waits until the previous submit-

ted operation has been executed and acknowledged by the corresponding participant.

In other words, a transaction submits an operation only if it has no other operations

pending, irrespective of the type of the pending operation. When a transaction re-

ceives the results of an operation, it spends some ThinkT ime which represents the

processing time of the received results before it sends the next operation for execution.

98

In the participant-sequential execution model, a transaction submits all its oper-

ations to a participant at the same time. When the transaction receives the results of

the operations that it has submitted to a participant, it also spends some ThinkT ime

before it sends the next set of operations to another participant.

In the parallel execution model, a transaction submits all its operations to all

participants at the same time without any ThinkT ime between its operations.

In all execution models, once the last pending operation pertaining to a transac-

tion is acknowledged and a commit primitive is received from the transaction, the co-

ordinator of the transaction initiates an atomic commit protocol. In the participant-

sequential and parallel execution models it is assumed that all the operations of a

transaction are known at the time that the transaction is submitted to the system

whereas in the sequential execution model there is no such an assumption. Hence,

the latter execution model is more general than the other two and, in our study, we

consider only this model (ExecPattern).

5.1.3 Workload Model

Each site is associated with a multiprogramming level (MPL) that is speci�ed

as a parameter to the system. The MPL parameter is used to limit the number of

active transactions at a site at any given time. At the beginning of a simulation run, a

trace of transactions is generated and used with all protocols. The trace is generated

based on the ExecPattern of transactions, the number of sites participating in a

transaction's execution, which is speci�ed by the DistDegree parameter, the number

of data operations that a transaction performs at each participant site, which is

uniformly distributed between 0.5 and 1.5 of the ParticipantSize parameter, and

the percentage of read-only transactions (PercRead-OnlyTrx).

The simulator is run at full capacity (i.e., peak load). That is, when a transaction

terminates, a new transaction enters the system and starts executing at the site

where the previous transaction has terminated. For aborted transactions, we use fake

99

restarts where an aborted transaction is restarted as an independent transaction after

a delay time that is equal to the mean response time of transactions. For each run, the

simulator executes until 10,000 transactions are committed. This translates to a total

of 12,000 to 40,000 transactions that are processed by the system, depending on the

transaction length. We con�rmed that this number of transactions makes our system

operate within its steady state by comparing runs with 10,000, 12,000 and 15,000

committed transactions. Our comparison did not show any statistically signi�cant

di�erences between these runs. Hence, in all our experiments, we run our system

for 10,000 committed transactions. The performance curves in all our experiments

represent the statistical mean of three independent runs with a con�dence half-length

interval of no more than 2.7 at the 90% con�dence level and no more than 3.5%

relative precision (i.e., relative error).

5.2 Performance of Atomic Commit Protocols (ACPs) During Normal

Processing

In this section, we evaluate the performance of ACPs in the absence of failures.

The parameter settings for these experiments are shown in Table 10. Since there are

no failures, in our experiments, we assume that when a transaction reaches its commit

point (i.e., all its operations have been executed and acknowledged), the transaction

will be committed. Also, since 2PC and PrA behave exactly the same under in

the absence of failures for committing transactions, for the clarity of our �gures, we

include only the performance curves of PrA. For the non-failure case, we conducted

three sets of experiments which are shown in Table 11. The �rst set of experiments,

experiments 1 and 2, deal with the impact of ACPs on the system's performance in

the case of, relatively, long and short update transactions, respectively. Given the

size of the simulated database, long transactions execute, on average, 6 operations

at each participant site while short transactions execute, on average, 2 operation

at each participant site. The second set of experiments, experiments 3 and 4, deal

with the impact of ACPs on the system's performance in the presence of read-only

transactions for long and short transaction sizes, respectively, without the use of

read-only optimizations. The third set of experiments, experiments 5 and 6, show

100

Table 10 Simulation parameters for the non-failure case.

Database Parameters

1. NumSites 8

2. NumObjs 1000

Transaction Parameters

3. ExecPattern Sequential

4. DistDegree 3

5. ParticipantSize 6 (long) and 2 (short)

6. ThinkTime 0

7. PercRead-OnlyTrx 0 (update), 70 %

Site Parameters

8. NumCPUs 1

9. NumDisks 1 for each log and 2 for data

10. MPL 4-14 (long), 5-50 (short)

11. HitRate 80 %

12. LogFlushRate 50 %

13. LogSize 10 pages

Resource Parameters

14. CPUTime(MESG) 1 msec

15. CPUTime(READ) 5 msec

16. CPUTime(WRITE) 5 msec

17. DiskTime 20 msec

18. DiskTransfTime 0.1 msec

19. PropLatency 50 msec

101

Table 11 Non-failure experiments.

Set No. 1

Experiment 1 Long, update transactions

Experiment 2 Short, update transactions

Set No. 2

Experiment 3 Long, 70% read-only transactions

Experiment 4 Short, 70% read-only transactions

Set No. 3

Experiment 5 Long, 70% read-only transactions with read-only optimizations

Experiment 6 Short, 70% read-only transactions with read-only optimizations

the e�ects of read-only optimizations on the performance of ACPs for long and short,

70% read-only transactions, respectively.

5.2.1 Experiment 1: How do ACPs perform with long transactions?

In this experiment as well as all the other experiments that we report in this

dissertation, we measure the system throughput which is the total number of com-

mitted transactions per second with varying multiprogramming levels (MPLs). The

MPL represents the total number of transactions executing at any given site and at

any given point in time (since the system operates at full capacity). As indicated in

other studies that use a closed-queuing system model (e.g., Gupta et al.

(19)

), the

performance curves of the response time of transactions is the inverse of the system

throughput curves. Hence, we do not report on the response time of transactions in

our study.

As shown in Figure 15, the x axis is used for the MPL while the y axis is used

for the system throughput. As shown in the �gure, the performance curves of all

ACPs start to increase from MPL 4 up to the peak MPL (i.e., MPL 8) and then they

start to decline. This thrashing behavior of the system is due to the contention of

102

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t

MPL

DECC
IYV
CL

PrC
PrA

Figure 15 The performance of ACPs for long update transactions.

transactions over the data objects as well as the system resources (i.e., CPU, Disk,

log bu�er, and the
ushing and fetching of data objects) and appears in all our

experiments as well as other simulation studies

(73; 18; 19)

. Due to this contention,

at high MPLs, transactions tend to abort because of the high percentage of con
icts

over the data objects, reducing the overall system performance.

In this experiment, we examine the performance of the di�erent protocols when all

the operations of transactions are update operations and transactions are relatively

long, given the size of our database. At the peak MPL (MPL 8), the di�erence in the

performance of the system in the ideal case (i.e., distributed-execution centralized-

commit (DECC)) and the worst case (i.e., using the coordinator log (CL) protocol),

in this experiment, is 2.5 transactions per second which translates to about 15%

performance di�erence. In the case of implicit yes-vote (IYV), DECC outperforms

IYV by about 5%. At the same time, IYV outperforms all other protocols. Also, all

three 2PC variants have about the same throughput. IYV outperforms two-phase

103

commit variants at the peak performance by about 5% performance enhancement in

throughput with no less than 2.5% enhancement across all multiprogramming levels.

Similarly, IYV outperforms CL by about 10% at the peak performance with no less

than 9% performance enhancement across all multiprogramming levels.

One interesting observation in this experiment and all the experiments that we

report in this dissertation is the existence of a cross-over point between the per-

formance curves of PrA and PrC even though all transactions are committed once

they reach their commit point. Based on the traditional performance evaluation, this

point should not exist since PrC will always have the least number of coordination

messages and forced log writes. However, our simulation system reveals that under

low system loads, the initiation records of PrC a�ect its performance and makes it

worse than PrA. After a certain point (at higher MPLs), the e�ects of the forced

log writes at the participants in PrA as well as the acknowledgment messages of the

commit decisions overshadow the cost of the initiation records of PrC, making PrC

performance better than PrA performance. Our results also show that the location

of this cross-over point as well as the magnitude in the performance di�erence be-

fore the cross-over point changes from one experiment to another, depending on the

transaction mix, the length of transactions and whether a read-only optimization is

being used or not.

5.2.2 Experiment 2: How do ACPs perform with short transactions?

Figure 16 shows the impact of the di�erent ACPs on the performance of the system

when all the operations of transactions are update operations and transactions are

relatively short, given the size of our database. Comparing the di�erent protocols

to DECC, DECC outperforms IYV by about 12% while it outperforms CL by about

13%. With respect to PrA and PrC, DECC outperforms PrC by about 27% whereas

DECC outperforms PrA by about 83%.

The results of this experiment also show three interesting observations. The

�rst observation is that CL is a clear winner compared to the three 2PC variants

104

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL

DECC
IYV
CL

PrC
PrA

Figure 16 The performance of ACPs for short update transactions.

as opposed to being the loser in the case of long, update transactions (Experiment

1). This result clearly supports the motivation behind the design of CL

(9)

which

assumes short transactions with high probability of being committed once they reach

their commit point. However, we note that the performance of CL starts to degrade

more quickly after MPL 25 where its performance enhancement over PrC is about

3% at MPL 50 after it was about 12% at the peak MPL. On the other hand, IYV

performance enhancement over PrC degrades to about 8% at MPL 50 from about

13% at MPL 15. The reason behind the quick degradation in CL's performance is

due to its distributed write-ahead logging (DWAL) which requires a participant that

aborts a transaction to wait until it receives the undo log records pertaining to the

transaction from the transaction's coordinator before it can release the locks held by

the transaction. In contrast, the other protocols do not su�er from such an overhead

since the undo records of an aborting transaction at a participant are available locally

in its own log.

105

The second observation is that the performance of PrC has increased from a negli-

gible one in the case of long transactions (Experiment 1) to about a 45% enhancement

over the performance of PrN and PrA at peak performance (MPL 15). Similarly, by

comparing the results of the �rst experiment and this one, we notice that the max-

imum performance di�erence in the �rst experiment was about 15% (DECC versus

CL) whereas in this experiment it is about 83% (DECC versus PrA). Thus, not only

the relative performance order of the protocols have changed (CL became a winner

in this experiment compared to the 2PC variants after it was a looser in the previous

experiment), bout also the magnitude in the performance di�erences have greatly

changed. These two results clearly support our claim that the traditional way of

evaluating the performance of ACPs does not only fail to re
ect their relative per-

formance but it also fails to re
ect the magnitude in performance di�erences. The

magnitude in the performance di�erences between Experiment 1 and Experiment 2

can be justi�ed once the ratio of the cost associated with commit processing over the

cost of a transaction's execution is considered. In the case of long transactions, com-

mit processing is less costly than in the case of short transactions compared to the

overall transaction execution cost. Thus, any extra coordination messages or forced

writes incurred in an ACP are more severely re
ected on its performance with short

transactions.

The third observation is regarding PrA's low thrashing behavior compared with

the other protocols after it reaches its peak performance. With respect to this issue,

we note that PrA reaches its performance peak very quickly because the system

becomes highly congested due to the excessive forced log writes and coordination

messages. This has a consequence that makes PrA less sensitive to increased MPL

compared to the other protocols.

5.2.3 Experiment 3: How do ACPs perform with long, read-only trans-

actions?

Figure 17 shows the performance of ACPs for log, majority read-only transac-

tions. Since read-only transactions are the majority of transactions in any general

106

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t

MPL

DECC
IYV
CL

PrC
PrA

Figure 17 The performance of ACPs with long 70% read-only transactions.

database system, in this experiment, we generated a trace of long transactions that

contains 70% read-only transactions. By comparing Figure 17 to Figure 15, we notice

that, when read-only transactions are introduced, the performance of all the evalu-

ated ACPs has been enhanced by at least 10%, across all multiprogramming levels.

Furthermore, the peak performance point of all protocols has been shifted from MPL

9 to MPL 10. This is consistent with the fact that the system resources are still

under utilized and transactions do not con
ict at the same rate as in Experiment 1.

In this experiment, IYV still exhibits the best performance over all other protocols

and across all multiprogramming levels. In addition, CL's performance has been

enhanced to become better than all three two-phase commit variants at low MPLs

and about the same as PrC at peak performance (i.e., around MPL 10) due to

the reduced distributed write-ahead logging (DWAL) of CL when the majority of

transactions are read-only.

107

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL

DECC
IYV
CL

PrC
PrA

Figure 18 The performance of ACPs with short 70% read-only transactions.

Finally, we again notice a cross-over between the performance curves of PrC and

PrA with PrC performing better around the peak MPL. As mentioned above, even

though we noticed a cross-over point in each of our experiments, in some �gures for

the sake of clarity, the cross-over points are not shown.

5.2.4 Experiment 4: How do ACPs perform with short, read-only trans-

actions?

As in experiment 3, in this experiment we introduced a 70% read-only transac-

tions in the transaction trace. Figure 18 shows the performance of ACPs for short

transactions where the performance of all ACPs has been enhanced by at least 7%

across all multiprogramming levels (which is the case in the PrA protocol). Inter-

estingly, the performance of CL became better than IYV in this experiment. This is

because DWAL does not add much extra overhead in the case of short transactions

108

dominated by read-only transactions and the extra non-forced (commit) log records

of IYV become more signi�cant given the limited log bu�ers of the participants.

We also note that PrA reaches a steady state in this experiment for a period longer

than that in the previous experiment where all transactions are update transactions

(Experiment 2). This is because the 70% read-only transactions do not con
ict

over locks with each other and, therefore, read-only transaction do not get aborted

unless it con
icts over a lock with an update transaction, resulting in a less aborted

transactions with less system thrashing.

5.2.5 Experiment 5: How do read-only optimizations a�ect the perfor-

mance of ACPs for long transactions?

In this experiment, we used traces containing 70% read-only as in experiment 3

and factored in the e�ects of the traditional read-only (TRO) optimization, that we

discussed in Section 3.2.7 and our unsolicited update-vote (UUV) optimization, that

we will discuss in the next chapter (Section 6.6), on the behavior of the 2PC variants.

We also applied a special case of UUV in the case IYV and CL. Since a coordinator in

both protocols can determine if a transaction is read-only at a participant's site based

on whether it has received any log records from the participant during the execution

of the transaction, participants do not have to send unsolicited update-votes. Thus,

in this special case, which we will call RO, the coordinator sends a read-only message

to each read-only participant without waiting until the commit record is in its stable

log, thereby releasing the resources at read-only participants earlier than their update

counterparts.

As shown in Figure 19, neither IYV nor CL have bene�ted signi�cantly from RO

(i.e., about 1% performance enhancement) while the 2PC variants have bene�ted

more from TRO and UUV reducing the performance gap with IYV at high MPLs

from about 7% (which is the case in Experiment 3) to 3%. For CL, at low MPLs,

its performance was about the same as the 2PC variants whereas, at high MPLs, CL

performance became worse than PrN, PrA and PrC due to DWAL.

109

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t

MPL

(a) TRO Optimizations

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t

MPL

(b) UUV Optimizations

DECC
IYV
CL

PrC
PrA

Figure 19 The performance of ACPs for long transactions with read-only optimiza-

tions.

5.2.6 Experiment 6: How do read-only optimizations a�ect the perfor-

mance of ACPs for short transactions?

As in the previous experiment, in this experiment we have also factored in the

e�ects of TRO, UUV and RO on the behavior of ACPs. As we have reasoned in

experiment 2, any extra coordination messages or forced log writes in the case of

short transactions by an ACP, have a signi�cant impact on its performance com-

pared to long transactions. Conversely, any reduction in the coordination messages

or forced log writes greatly enhances the performance of an ACP in the case of short

transactions as opposed to long ones. Thus, unlike the results of experiment 5, the

performance of all protocols has been enhanced with PrA gaining the most and CL

the least, as shown in Figure 20. PrA has gained about 60% performance enhance-

ment using TRO, bringing its performance comparable to PrC. It also made PrA as

sensitive as the other protocols to the MPL level as opposed to its behavior in exper-

iments 2 and 4. By factoring in the e�ects of RO, the performance of IYV is again

better than CL since it has gained more by the reduction of the logging activities

110

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL
(a) TRO Optimizations

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL
(b) UUV Optimizations

DECC
IYV
CL

PrC
PrA

Figure 20 The performance of ACPs for short transactions with read-only optimiza-

tions.

than CL using RO. By comparing UUV with TRO, PrA has gained about 70% with

UUV instead of 60% with TRO while PrC has gained 12% using UUV instead of 6%

using TRO. As a result, UUV have closed the gap between the performance of PrC

and IYV to about 3% in favor of IYV.

5.3 Performance of ACPs in Case of Failures

In this section, we evaluate the performance of ACPs in the presence of failures.

We investigate the e�ects of failures on both update transactions and 70% read

transactions with long and short transaction sizes by presenting the results of three

experiments. The �rst two experiments deal with single failures while the third

experiment deals with double failures.

For our failure runs, the time between failures was set to 10,000 milliseconds, the

repair time for a failure was set to 200 milliseconds, and the message timeout to

111

400 milliseconds. This means that on average for long transaction about 25 failures

occurred per 10,000 committed transactions while for short transactions about 8

failures occurred per run. It has to be noted that this is an extreme situation even

for a relatively high failure-prone system. However, this exaggerated failure-prone

tests will show us the robustness or vulnerability of the di�erent protocols to system

failures.

5.3.1 Experiment 7: How do single failures a�ect the performance of

ACPs in case of long transactions?

In the case of long, update transactions, Figure 21 (a), the presence of single

failures seems to cause a 25% performance degradation for all protocols. Whereas, in

the case of long, 70% read-only transactions, Figure 21 (b), the performance degra-

dation for all protocols is between 10-15%. Obviously, a 70% read-only transaction

mix will cause less logging and therefore speed system recovery time for a failed site

causing system throughput to remain higher. Furthermore, there is very little or no

performance gain in using IYV compared with the three two-phase commit variants

in the case of long transactions. The added expense, for a recovering participant in

IYV, to contact all the coordinators in the system in order to recover any missing

redo log records is most likely responsible for this phenomenon. Similarly, both the

participant and coordinators for CL must contact all other sites in the system in

order to gain any missing or incomplete information. Therefore, the performance

of CL remains lower than the performance of IYV and the three two-phase commit

variants.

5.3.2 Experiment 8: How do single failures a�ect the performance of

ACPs in case of short transactions?

In the case of short, update transactions, Figure 22 (a), the presence of single

failures cause between a 15-20% performance degradation for IYV, CL, and PrC.

Interestingly, PrA is a�ected less strongly by the presence of failures in this case

112

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t

MPL

(a) Update Transactions

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12 13 14

T
hr

ou
gh

pu
t

MPL

(b) 70% Read-Only Transactions

IYV
CL

PrC
PrA

Figure 21 Single failures for long transactions.

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL
(a) Update Transactions

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL
(b) 70% Read-Only Transactions

IYV
CL

PrC
PrA

Figure 22 Single failures for short transactions.

113

since PrA is already severely congested on the system resources and committing less

transactions. In the case of 70% read-only transactions Figure 22 (b), the performance

degradation of IYV, CL, and PrC is only between 5-10%. Also IYV and CL retains a

sizable advantage over the two-phase commit variants in both single failure cases due

to their far superior performance in normal processing. At peak throughput, IYV

retains about a 7% advantage over PrC while CL's advantage over PrC is slightly

less.

In summary, for short transactions, the performance of IYV and CL in normal

processing is enough to o�set the additional costs of their recovery schemes and still

provide a substantial performance improvement.

5.3.3 Experiment 9: How well can IYV perform in the case of simulta-

neous failures?

We have performed two experiments for simultaneous failures in the case of short

transactions. The total number of failures should be double the single failure case

for short transactions since two sites are now failing simultaneously. In this experi-

ment, we choose to compare IYV with PrC, and we did not consider CL since IYV

outperforms CL in all the previous failure experiments. Similarly, we chose PrC to

represent the 2PC variants since PrC has been shown in to out perform PrA and

PrN in previous experiments.

Figure 23 (a) represents the case where both failures occur at the same moment,

and are repaired concurrently. While throughput degrades 17% from the single failure

case, IYV achieves a 10% performance advantage over PrC.

The second case represents the situation of two sequential/overlapping failures

of a coordinator and participant site. In e�ect, both failed sites are a�ected by

the overlapping failures in the case of IYV while for PrC, the failed sites recover

independently. In Figure 23 (b), the two failures occur at the same time, but the

repair time for one of the failures is the normal 200 ms while the repair time for

114

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL
(a) Synchronized Failures

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t

MPL
(b) Overlapping Failures

IYV
PrC

Figure 23 Simultaneous failures for short transactions.

the second failure is 2000 ms. IYV holds only a 4% advantage over PrC at peak

throughput, and the performance of IYV degrades 5% from the synchronized failure

case while PrC degrades very little.

5.4 Summary of Results

The results of our experiments show that the IYV protocol is better or performs

equally to the other evaluated protocols in almost all cases of long and short, update

transactions as well as of long and short, majority read-only transactions with and

without using a read-only optimization. This also holds in the presence of single and

two overlapping site failures. The exception was CL performing better than IYV in

the case of short, majority (above 70%) read-only transactions without a read-only

optimization. This leads us to the conclusion that implicit yes-vote is, in general,

better than all the other evaluated protocols making it the choice for the future

gigabit-networked distributed database systems.

115

Our results also showed that the performance of CL is greatly in
uenced by

transactions' length and the degree of multiprogramming. CL performance degrades

signi�cantly for long transactions and high multiprogramming levels. CL generally

performs worse than the three 2PC variants for long transactions except for the case

of majority read-only transactions without a read-only optimization.

Another very interesting result is that, when there is a performance di�erence

between 2PC variants, PrC is always the winner. This is especially the case for short

transactions. This result is in contrast with the general belief that PrA is better

than PrC. This is only true in low multiprogramming levels where the initiation log

records associated with PrC has a major impact on its performance. In fact, we have

observed in all our experiment a cross-over in their performance in favor of PrC. The

location of the cross-over point varies depending on the length of transactions, the

transaction mix (i.e., the percentage of read-only transactions) and whether or not a

read-only optimization is used.

Finally, we note the di�erence between these evaluation results and those in Chap-

ter 4 which are based on the traditional performance evaluation method and which

did not capture neither the relative performance of ACPs nor the magnitude in the

performance di�erences.

Since IYV is not applicable in systems that require an explicit voting phase (as we

mentioned in the previous chapter) and based on our performance evaluation results,

in the next chapter, we investigate techniques that enhances the performance of PrC

in the context of the more general multi-level transaction execution model since PrC

is the best alternative. We also present our new read-only optimization (i.e., UUV)

that we have evaluated its performance in this chapter and show how it eliminates

the initiation records of PrC variants from read-only participants and transactions.

116

6.0 AN ARGUMENT IN FAVOR OF PRESUMED COMMIT

PROTOCOL

In the previous chapters, we considered atomic commit protocols (ACPs) in the

context of a two-level transaction execution model. Current distributed transaction

processing standards and commercial systems adopt a more general multi-level trans-

action execution model. Although implicit yes-vote (IYV) is a highly e�cient protocol

that can be extended to the multi-level transaction execution (MLTE) model in a

straight forward manner, it might not always be applicable as we mentioned in the

Chapter 4. For this reason and motivated by the superior performance of presumed

commit (PrC) protocol over presumed abort (PrA) protocol, as our simulation results

showed in the previous chapter, in this chapter, we revisit PrC and PrA protocols in

the context of MLTE model.

In Section 3.2.8.1, based on our analytical evaluation, we concluded that perfor-

mance argument that favors the choice of PrA protocol rather than PrC to be the

standard ACP is due to the major drawback of PrC which requires forcing initiation

records for both read-only and update transactions. Thus, if there is a way to elim-

inate or reduce the cost associated with the initiation records, the argument would

go in favor of PrC, especially given the fact that high speed networks and computing

systems are becoming highly reliable and distributed transactions will most probably

commit after all their operations have been successfully executed and acknowledged.

The same intention has been behind the design of the new presumed commit protocol

for the two-level transaction execution model

(7)

that we brie
y discussed in Section

3.2.4.

In this chapter, we present two new PrC variants that force write at most a single

initiation record, at the root coordinator, e�ectively eliminating all the intermediate

initiation records from cascaded coordinators in the MLTE model

(76)

. The �rst

PrC variant is called the rooted presumed commit (RPrC) protocol where only the

117

root coordinator force write an initiation record. The second PrC variant is called

the re-structured presumed commit (ReSPrC) protocol which is based on the idea of

attening the transaction execution trees

(8)

. The di�erence between the two variants

is that RPrC protocol is more general with respect to applicability, whereas ReSPrC

protocol is more e�cient. Speci�cally, since RPrC protocol does not require the

transformation of a transaction's execution tree into a two-level commit tree, which

is the case in ReSPrC protocol, RPrC protocol is more applicable than ReSPrC

protocol. On the other hand, when the ReSPrC protocol is applicable, it provides

savings in time complexity during commit processing that ReSPrC protocol does not

provide.

Furthermore, in order to completely eliminate the e�ects of the initiation records

from read-only participants and read-only transactions, we develop a new read-only

optimization called the unsolicited update-vote (UUV)

(77; 76)

. UUV can be used

with RPrC, ReSPrC, as well as the other PrC variants.

The rest of this chapter is structured as follows: In the next section, we �rst

discuss the multi-level transaction execution (MLTE) model. Then, we discuss multi-

level PrA

(4)

and extend PrC to the MLTE model. In Section 6.2, we compare

the performance of multi-level PrA and multi-level PrC. Then, we present RPrC in

Section 6.3 and ReSPrC in Section 6.4. In Section 6.5, we evaluate the two new PrC

variants with respect to applicability and performance. In Section 6.6, we present

UUV while in Section 6.7, we apply UUV to both PrA and PrC (including the two

proposed PrC variants) and show how UUV eliminates the cost of the initiation log

records from read-only participants and transactions.

6.1 Multi-Level Presumed Abort and Presumed Commit Protocols

In this section, we �rst describe multi-level presumed abort and presumed commit

protocols. Then, we discuss the recovery aspects in both protocols.

118

6.1.1 Description of Multi-Level Presumed Abort and Presumed Commit

Protocols

The multi-level transaction execution (MLTE) model is similar to the tree of

processes model

(4)

. In this model, a participant is a process that is able to decompose

a subtransaction further. Thus, a participant can initiate other participant processes

at its site or di�erent sites. Hence, the processes pertaining to a transaction can be

represented by a multi-level execution tree where the coordinator process resides at

the root of the tree. In this model, the interactions between the coordinator of the

transaction and any process have to go through all the intermediate processes, called

cascaded coordinators, that have caused the creation of a process.

In the MLTE model, the behavior of the root coordinator and each leaf partici-

pant in the transaction execution tree, in both 2PC variants (PrA and PrC), remains

the same as in two-level transactions. The only di�erence is the behavior of cascaded

coordinators (i.e., non-root and non-leaf participants) which behave as leaf partic-

ipants with respect to their direct ancestors and root coordinators with respect to

their direct descendants. Speci�cally, when a cascaded coordinator receives a pre-

pare to commit message, in multi-level PrA (Figure 24), it forwards the message to

its descendent participants and waits for their votes. As shown in the �gure, if all

descendants have voted \yes", the cascaded coordinator force writes a prepare log

record and then sends a \yes" vote to its coordinator. If any descendant has voted

\no", the cascaded coordinator sends an abort decision to its descendants and a \no"

vote to its coordinator. When a cascaded coordinator receives an abort decision (Fig-

ure 24 (a)), it writes a non-forced abort record, forwards the decision to its direct

descendants and forgets the transaction. On the other hand, when a cascaded co-

ordinator receives a commit decision (Figure 24 (b)), it forwards the decision to its

direct descendants and force writes a commit record. Afterwards, the cascaded coor-

dinator sends an acknowledgment to its coordinator. Once the direct descendants of

the cascaded coordinator acknowledge the decision, it writes a non-forced end record

and forgets the transaction.

119

Leaf Participant Leaf Participant

Prepared Record
Force Write

Yes

Prepare

Yes

AbortAbort

Prepare

Force Write
Prepared Record

Abort Record

Prepare

Yes

Force Write
Prepared Record

Write non-forced
Abort Record

Coordinator
Coordinator

Cascaded
l ki

Write non-forced

j SiteSiteSiteSite

Abort

Write non-forced
Abort Record

(a) Abort case.

l
Leaf Participant

Force Write
Prepared Record

Coordinator
i

Force Write
Commit Record

Leaf Participant

Write non-forced

Commit Record
Force Write

Prepare

Yes

Force Write
Prepared Record

Force Write
Prepared Record

Prepare

CommitCommit

Force Write
Commit Record

SitekSitej

Coordinator
Cascaded

SiteSite

End Record

AckAck

Prepare

Yes

Yes

Commit

Force Write
Commit RecordAck

Write non-forced
End Record

(b) Commit case.

Figure 24 Multi-level PrA.

120

PrC can be extended in the MLTE model in a manner similar to PrA. While the

extension of PrC to MLTE model has been highlighted by Mohan et al.

(4)

, here

we work out the details of the extension. We also adopt the early acknowledgment

strategy rather than the late acknowledgment strategy

(8)

when extending both PrA

and PrC to the MLTE model since we do not consider heuristic decisions

(33; 8; 34)

in this dissertation.

As shown in Figure 25, each cascaded coordinator in multi-level PrC has to force

write an initiation record before propagating the prepare to commit message to its

descendent participants. If the �nal decision is to abort the transaction (Figure 25

(a)), a cascaded coordinator propagates the decision to its descendants, force writes

an abort record and, then, acknowledges its ancestor. Once the acknowledgments

arrive from the descendants, a cascaded coordinator writes a non-forced end record

and forgets the transaction. If the �nal decision is a commit decision (Figure 25

(b)), a prepared to commit cascaded coordinator propagates the decision to its direct

descendants, writes a non-forced commit record and, then, forgets the transaction.

6.1.2 Recovery in Multi-Level Presumed Abort and Presumed Commit

Protocols

The behavior of the root coordinator and leaf participants in case of failures

remain the same as in the two-level transaction execution model. Again, only the

behavior of cascaded coordinators is di�erent which behaves, in both multi-level PrA

and multi-level PrC, as both a leaf and a root participant. Hence, in the case of a

failure, the presumption of PrA or PrC, depending on which protocol is used, holds

between any two adjacent levels in the transaction tree. That is, if a participant

inquires its direct ancestor about the outcome of a transaction, the ancestor replies

according to the presumption of the protocol used in the event that it does not

remember the transaction.

121

Leaf Participant Leaf Participant

Abort

Abort Record

Coordinator
Coordinator

Cascaded
l ki j SiteSiteSiteSite

Force Write
Prepared Record

Prepare

Force Write

Prepare

Abort

Force Write
Initiation Record Prepare

Prepared Record
Force Write

Yes

Prepared Record
Force Write

YesYes

Initiation Record
Force Write

Force Write
Abort RecordAckAck

Abort

Force Write
Abort RecordAck

Write non-forced
End Record

Write non-forced
End Record

(a) Abort case.

l
Leaf Participant Coordinator

i

Commit Record

Leaf Participant

CommitCommit

Commit Record

SitekSitej

Coordinator
Cascaded

SiteSite

Prepared Record
Force Write

Prepare

Yes

Write non-forced

Force Write
Initiation Record Prepare

Force Write
Initiation Record Prepare

Force Write
Prepared RecordYes

Commit Record
Force Write

Yes Prepared Record
Force Write

Write non-forced

Commit

Write non-forced
Commit Record

(b) Commit case.

Figure 25 Multi-level PrC.

122

6.2 Evaluating Multi-Level Presumed Abort and Presumed Commit

Protocols

As we discussed in Chapter 3, PrA is, in general, better than PrC in the two-level

transaction execution model due to the latter's excessive force writes even for read-

only transactions. In this section, we evaluate the performance of multi-level PrA

and multi-level PrC.

In the MLTE model, multi-level PrA and multi-level PrC retain the relative ad-

vantages of PrA and PrC. They also retain the relative message complexity of PrA

and PrC. However, due to the extra forced initiation log records at the cascaded

coordinators, the di�erence between the cost of aborting a transaction in multi-level

PrC and multi-level PrA is greater than the di�erence between PrC and PrA. For

this reason, the di�erence between the cost of committing a transaction in multi-

level PrC and multi-level PrA is less than the di�erence between PrC and PrA. Let

us illustrate this by considering a transaction with N participants of which C are

cascaded coordinators and L are leaf participants. Our evaluation is based on the

behavior of the di�erent participants that we illustrated in Figures 24 and 25.

Multi-level PrA involves L + C (or N) forced log writes to abort a transaction

whereas multi-level PrC involves 2L + 3C + 1 (or 2N + C + 1). That is, multi-level

PrC incurs N + C + 1 more forced log writes than multi-level PrA while PrC incurs

only N + 1 more forced log writes than PrA to abort a transaction. To commit a

transaction, multi-level PrC involves L + 2C + 2 (or N + C + 2) forced log writes

whereas multi-level PrA incurs 2L + 2C + 1 (or 2N + 1). That is, multi-level PrA

requires N �C � 1 more forced log writes than multi-level PrC while, as we showed

in Section 3.2.8.1, PrA incurs N � 1 more forced log writes than PrC.

In addition to reducing the relative performance advantage of multi-level PrC

over multi-level PrA in committing transactions, the fact that these extra forced ini-

tiation records are written sequentially during the voting phase gives rise to another

undesirable e�ect. In a lightly loaded system where there is less congestion over par-

ticipant log disks, a coordinator in multi-level PrC experiences more delays to reach

123

a �nal decision than in multi-level PrA. This is because the coordinator, in PrC, has

to wait until all the initiation records are forced in all its descendants, in a sequen-

tial fashion (Figure 25), before it receives their votes and makes the �nal decision.

Consequently, participants in multi-level PrC receive a �nal decision later than in

multi-level PrA. Therefore, participants hold the resources longer in multi-level PrC

than in multi-level PrA. This increased turnaround time of transactions in multi-level

PrC compared to multi-level PrA favors the usage of multi-level PrA. It also means

that in the case of transactions with deep trees, the tradeo� between reducing con-

icts over data items in multi-level PrA and reducing extra forced commit records at

every participant (cascaded coordinator or leaf participant) in multi-level PrC goes

in favor of multi-level PrA.

The force writing of initiation log records sequentially has the same negative e�ect

on read-only transactions as for update ones. This is because a read-only participant

in multi-level PrC has to su�er as well from the delays associated with the forced

initiation records in all its ancestors in the transaction tree before it can vote \read-

only" and release any resources.

From the above discussion, it becomes clear that the PrC variants are the best

choice for committing transactions only in highly loaded systems and whose the

majority of update transactions are �nally committed. However, in general, and in

systems in which the majority of the transactions are read-only in particular, the

PrA variants perform better. This is because the costs of aborting a transaction in

PrA variants are less than the costs of committing a transaction in PrC variants.

This asymmetry in their costs is due to initiation log records forced in PrC variants

for both update and read-only transactions. Since read-only transactions are the

dominant type of transactions in any general database system, PrA protocol has

become the choice of the current distributed transaction processing standards.

124

6.3 The Rooted Presumed Commit (RPrC) Protocol

To address the problems listed above, we have developed a new protocol called

the rooted presumed commit (RPrC) protocol. As opposed to multi-level PrC, RPrC

does not realize the two-level presumption of PrC on every adjacent level because it

structures cascaded coordinators as leaf participants with respect to logging. That

is, cascaded coordinators do not force write initiation records and, consequently, do

not presume commitment in the case that they do not remember transactions. We

describe this protocol in the following section.

6.3.1 Description of the RPrC Protocol

In RPrC, the root coordinator needs to know all the participants at all levels

in a transaction's execution tree. Similarly, each participant needs to know all its

ancestors in the transaction's execution tree. The former allows the root coordinator

to determine when it can safely forget a transaction while the latter allows a prepared

to commit participant at any level in a transaction's execution tree to �nd out the

�nal correct outcome of the transaction, even if intermediate cascaded coordinators

have no recollection about the transaction due to a failure.

In order for the root coordinator to know the identities of all participants in RPrC,

each participant includes its identity in the acknowledgment of the �rst operation.

When a cascaded coordinator receives an acknowledgment of a �rst operation from

a participant, it also includes its identity in the acknowledgment message. In this

way, the identities of all participants and the chain of their ancestors are propagated

to the root coordinator. As shown in Figure 26, when the transaction submits its

commit request, the coordinator, force writes an initiation record that includes the

identities of all participants in the transaction execution tree. Then, it sends out

prepare to commit messages to its direct descendants.

The root coordinator sends its identity as part of the prepare to commit message.

When a cascaded coordinator receives the prepare to commit message, it appends

125

its own identity before propagating the message to its direct descendants. When a

leaf participant receives a prepare to commit message, it copies the identities of its

ancestors in the prepare log record before sending its \yes" vote. When a cascaded

coordinator receives \yes" votes from all its direct descendants, the cascaded coor-

dinator also records the identities of its ancestors as well as its descendants in its

prepare log record before sending its collective \yes" vote to its direct ancestor.

If any direct descendant has voted \no", the cascaded coordinator force writes an

abort log record, sends a \no" vote to its direct ancestor and an abort message to each

direct descendant that has voted \yes" and waits for their acknowledgments. Once

all the abort acknowledgments arrive, the cascaded coordinator writes a non-forced

end record and forgets the transaction.

If the root coordinator receives a \no" vote, it propagates an abort decision to

all direct descendants that have voted \yes" and waits for their acknowledgments

(Figure 26 (a)), knowing that all the descendants of a direct descendant that has

voted \no" have already aborted the transaction. When the coordinator receives the

acknowledgments of its abort decision, it writes a non-forced end record and forgets

the transaction. When a cascaded coordinator receives the abort message, it behaves

as in multi-level PrC. That is, it propagates the message to its direct descendants

and writes a forced abort record. Then, it acknowledges its direct ancestor. Once

the cascaded coordinator has received acknowledgments from all its direct descen-

dants, it writes a non-forced end record and forgets the transaction. When a leaf

participant receives the abort message, it �rst force writes an abort record and, then,

acknowledges its direct ancestor.

As in multi-level PrC, when the root coordinator receives \yes" votes from all

its direct descendants, it force writes a commit record (Figure 26 (b)), propagates

its decision to its direct descendants and forgets the transaction. When a cascaded

coordinator receives a commit message, it propagates the message to its direct de-

scendants, writes a non-force commit record and forgets the transaction. When a leaf

participant receives the message, it commits the transaction and writes a non-forced

commit record.

126

Leaf Participant Leaf Participant

Abort

Abort Record

Coordinator
Coordinator

Cascaded
l ki j SiteSiteSiteSite

Force Write
Prepared Record

Prepare

Force Write

Prepare

Abort

Prepare

Prepared Record
Force Write

Yes

Prepared Record
Force Write

YesYes

Initiation Record
Force Write

Force Write
Abort RecordAckAck

Abort

Force Write
Abort RecordAck

Write non-forced
End Record

Write non-forced
End Record

(a) Abort case.

l
Leaf Participant Coordinator

i

Commit Record

Leaf Participant

CommitCommit

Commit Record

SitekSitej

Coordinator
Cascaded

SiteSite

Prepared Record
Force Write

Prepare

Yes

Write non-forced

Force Write
Initiation Record Prepare

Prepare

Force Write
Prepared RecordYes

Commit Record
Force Write

Yes Prepared Record
Force Write

Commit

Write non-forced
Commit Record

Write non-forced

(b) Commit case.

Figure 26 The rooted presumed commit (RPrC) protocol.

127

6.3.2 Recovery in RPrC Protocol

As in all other atomic commit protocols, site and communication failures are

detected by timeouts. If the root coordinator times out while awaiting the vote of

one of its direct descendants, the root coordinator makes an abort �nal decision, sends

abort messages to all its direct descendants and wait for their acknowledgments to

complete the protocol.

Similarly, if a cascaded coordinator times out while awaiting the vote of one of its

direct descendants, it makes an abort decision. In this case, the cascaded coordinator

force writes an abort log record, sends a \no" vote to its direct ancestor and abort

messages to all its direct descendants and waits for their abort acknowledgments.

In the event of a leaf participant site failure, during its recovery process, the

participant inquires its direct ancestor about the outcome of each prepared to commit

transaction. In its inquiry message, the participant includes the identities of its

ancestors recorded in the prepare log record. In this way, unlike the case of PrC, if

the direct ancestor of the prepared participant does not remember the transaction,

it uses the list of ancestors included in the inquiry message to inquire its own direct

ancestor about the transaction's outcome rather than replying with a commit message

by presumption. Eventually, either one of the cascaded coordinators in the path of

ancestors will remember the transaction and provide a reply, or the inquiry message

will �nally reach the root coordinator. The root coordinator will respond with the

appropriate decision if it remembers the outcome of the transaction or will respond

with a commit decision by presumption. Once the participant receives the reply

message, it enforces the decision and acknowledges it only if it is an abort decision.

In the event that the root coordinator fails, during its recovery process, the root

coordinator records in its protocol table each transaction with an initiation record

without a corresponding commit or end record. These transactions have not �nished

their commit processing by the time of the failure and need to be aborted. Thus,

for each of these transactions, the coordinator sends an abort message to its direct

descendants, as recorded in the initiation record, along with their lists of descendants

128

in the transaction execution tree. The recipient of the abort message can be either

a cascaded coordinator or a leaf participant. In the case of a cascaded coordinator,

if it is in a prepared to commit state, the cascaded coordinator behaves as in the

case of normal processing discussed above. Otherwise, it responds with a blind ac-

knowledgment, indicating that it has already aborted the transaction. Similarly, if

the abort message is received by a leaf participant, the participant behaves as in the

case of normal processing if it is in a prepared to commit state or replies with a blind

acknowledgment.

In the case of a cascaded coordinator failure, during its recovery process, the

cascaded coordinator adds to its protocol table each undecided transaction (i.e., a

transaction that has a prepare record without a corresponding �nal decision record)

and each aborted transaction that has not been fully acknowledged (i.e., a transac-

tion that has an abort log record without a corresponding end record) by its direct

descendants prior to the failure. For each undecided transaction, the cascaded coor-

dinator inquires its direct ancestor about the outcome of the transaction. As in the

case of a leaf participant failure, the inquiry message contains the identities of all

ancestors as recorded in the prepare record. Once the cascaded coordinator receives

the �nal decision, it completes the protocol as in the normal processing case discussed

above. For each aborted but not fully acknowledged transaction, the cascaded co-

ordinator re-sends abort messages to its direct descendants and waits for all their

acknowledgments before writing a non-forced end log record.

6.4 The Re-Structured Presumed Commit (ReSPrC) Protocol

In this section, we present ReSPrC which involves the restructuring of a multi-

level transaction execution tree, and in particular, combining PrC with the
attening

technique

(8)

to generate a two-level transaction commit tree.

The re-structuring of a transaction tree has been previously used to enhance the

reliability of commit processing by reducing the blocking e�ects of atomic commit

protocols in case of failures

(30)

. Also, the
attening of a distributed transaction's

129

tree has been suggested to reduce the cost of commit processing that is due to the

serialization of messages in a transaction's tree

(8)

. That is, instead of sending the

coordination messages during commit processing in a sequential fashion from one

process at one level to another at the next level in a transaction tree, the
atten-

ing technique allows the coordinator of the transaction to send messages directly

to the participant processes without having to go through intermediate processes.

This technique signi�cantly reduces the cost of commit processing especially in deep

trees

(8)

. We propose to use the same technique to eliminate the initiation log records

from cascaded coordinators and to reduce the cost that is associated with their seri-

alization.

In ReSPrC, when the root coordinator receives a commit request from a transac-

tion, it sends prepare to commit messages directly to all participants. To be able to

communicate directly with all the participants, the root coordinator needs to know

the identities of all participants. In ReSPrC, this is achieved in a manner similar to

the one used in the RPrC. That is, each participant propagates its identity in the

acknowledgment of the �rst operation it executes. Also, each participant needs to

know the identity of the root coordinator to be able to communicate with root coor-

dinator directly during the course of commit processing. This is achieved by having

the direct ancestor of a participant to propagate the identity of the root coordinator

in the �rst operation it forwards to the participant for execution. In this way, Re-

SPrC dynamically generates a two-level transaction commit tree for each transaction

irrespective of the depth of the transaction's execution tree.

Thus, in addition to achieving our initial goal, that is reducing the number of

initiation records in multi-level PrC, with ReSPrC we have enhanced the performance

of commit processing in PrC in two ways. First, the forced log records in ReSPrC are

performed in parallel rather than sequentially (e.g., the prepare log records). Second,

we have reduced the total number of log writes. That is, a cascaded coordinator

in ReSPrC neither force writes an initiation record nor writes an end record for an

aborted transaction.

130

Furthermore, the use of the
attening technique provides some performance en-

hancement in the presence of loopbacks

(50)

. A loopback occurs when a process, for

example P

1

at site Site

1

creates another process P

2

at Site

2

, which in turn creates P

3

back at Site

1

. Assuming P

1

is a coordinator, by using ReSPrC, rather than commu-

nicating with P

3

though P

2

located at a di�erent site, the coordinator communicates

directly and locally with P

3

without the cost of having to exchange messages with P

3

via an external communication medium. In database systems where loopbacks are

predominant, the performance enhancement becomes signi�cant.

6.5 Evaluation of RPrC and ReSPrC Protocols

Although both ReSPrC and RPrC eliminate the initiation records of multi-level

PrC from cascaded coordinators, ReSPrC is clearly more e�cient than RPrC since

ReSPrC allows for maximum parallelism during commit processing whereas RPrC

su�ers from the serialization of messages and forced log writes at each level of the

commit tree.

However, ReSPrC cannot always be used. ReSPrC cannot be used in an environ-

ment where a participant is prohibited from directly communicating with the root

coordinator or vice versa for security reasons. In general, ReSPrC also cannot be

used when the communication topology does not support direct interaction between

a root coordinator and the leaf participants. Similarly, the use of ReSPrC is limited

when the establishment of new direct communication channels (i.e., sessions) between

the coordinator and the participants are expensive and should be avoided as much

as possible. A situation that exists in some commercial systems

(6)

.

On the other hand, RPrC does not su�er from the applicability limitations of

ReSPrC even for security reasons. Although RPrC requires the propagation of the

participants' identities through the branches of the trees, by applying some basic

encryption techniques to the identities of the participants, RPrC provides su�cient

security to prohibit a participant from being able to identify the other participants.

For example, if a key-based encryption technique is to be used, each cascaded coor-

131

Table 12 The costs associated with multi-level PrA, multi-level PrC, RPrC and

ReSPrC protocols.

Commit Abort

Forced Log Writes Messages Forced Log Writes Messages

PrA 2L + 2C + 1 4N L + C 3N

PrC L + 2C + 2 3N 2L + 3C + 1 4N

RPrC L + C + 2 3N 2L + 2C + 1 4N

ReSPrC L + C + 2 3N 2L + 2C + 1 4N

dinator in a transaction tree would use a di�erent key to encipher the identity of its

direct ancestor before propagating it to its direct descendants. Similarly, a cascaded

coordinator enciphers the identities of its direct descendants, using the same key,

before propagating them to its direct ancestor.

The
attening technique can also be applied to multi-level PrA resulting in re-

structured PrA (ReSPrA). When ReSPrC and ReSPrA are applicable, the tradeo�

between them is reduced to the tradeo� between PrC and PrA as we discussed in

Section 3.2.8.1. Similarly, the relative advantage of RPrC and multi-level PrA is

reduced to the relative advantage of PrC and PrA. For instance, to illustrate the

latter, consider N participants of which C are cascaded coordinator and L are leaf

participants (N = L+ C). As shown in Table 12, to commit a transaction in RPrC

requires L+C+2 (or N+2) forced log writes whereas, to abort a transaction requires

2L + 2C + 1 (or 2N + 1) forced log writes, which is the same as in PrC. Thus, the

decisive factor in selecting one over the other is the cost associated with read-only

transactions which, as we show in the next section, can be e�ciently handled using

the unsolicited update-vote optimization.

132

6.6 The Unsolicited Update-Vote Optimization (UUV)

The cost associated with read-only participants can be reduced further if the coor-

dinator of a transaction knows, at the end of a transaction and before the initiation of

the commit protocol, which participants are read-only in the execution of the trans-

action. However, this does not mean, in general, that the coordinator can commit a

transaction by sending a single decision message to each read-only participant and

without voting as suggested in

(7)

. Before presenting how this can be achieved, let us

clarify this point with the following scenario. Note that here we do not assume any

particular concurrency control protocol as we did in Chapter 4 when we presented

the implicit yes-vote and implicit yes-vote with a commit coordinator protocols.

Assume two transactions T

1

and T

2

, initiated at two di�erent coordinators. T

1

is a

(completely) read-only transaction that reads a data item x located at a participant

site S

1

and a data item y located at site S

2

and then commits, whereas T

2

writes

both data items x and y and then commits. A read (write) operation performed by

transaction T

i

on a data item x is denoted by r

i

[x] (w

i

[x]) and the commit primitive

of T

i

is denoted by c

i

.

T

1

: r

1

[x] r

1

[y] c

1

T

2

: w

2

[x] w

2

[y] c

2

Furthermore, assume that the �rst operation of T

2

, w

2

[x], has been executed and

acknowledged. Following that, the two operations of T

1

are executed and acknowl-

edged. Then, T

2

submits its second operation, w

2

[y], to S

2

which is executed and

acknowledged. Assuming that the coordinator of T

1

knows that the transaction has

performed only read operations at both sites, the coordinator will send a c

1

to both

S

1

and S

2

. When c

1

is received by either S

1

or S

2

, it would mean that T

1

has been

terminated and it is the time to release the resources held by the transaction. If S

1

and S

2

are using an optimistic concurrency control protocol, the following execution

histories are possible.

133

H

S

1

: w

2

[x] r

1

[x] c

1

c

2

H

S

2

: r

1

[y] w

2

[y] c

1

c

2

The global history of execution is neither serializable nor recoverable. It is not seri-

alizable because its serialization graph is cyclic (i.e., T

2

!T

1

!T

2

) and non-recoverable

because T

1

reads the value of x written by T

2

and commits before T

2

does. We have

reached the above scenario because, using a single message without a reply, we have

e�ectively prohibited the participants from validating the read-only transaction with

respect to serializability and recoverability. Thus, sending a single termination mes-

sage from the coordinator to a read-only participant without a reply vote from the

participant, does not, generally, work since it might lead to inconsistencies.

Therefore, we need a method that allows a coordinator to determine which par-

ticipants are read-only in a transaction's execution during run time without having

to explicitly poll their votes, while still avoiding scenarios that might lead to in-

consistencies similar to the one given above. This is the essence of the unsolicited

update-vote (UUV) that we describe next.

6.6.1 Description of UUV Optimization

In UUV, when a transaction starts executing, its coordinator marks the transac-

tion as a read-only one in its protocol table. Each time the transaction needs access

to data at a new participant, the coordinator adds the identity of the participant to

its protocol table and marks the participant as read-only before sending the request

to the participant. When a participant executes the �rst update operation (which is

recognized by the generation of undo/redo log record(s)) on behalf of the transaction,

the participant sends an unsolicited update-vote to the coordinator. This is a
ag

that is set as part of the operation's acknowledgment to the coordinator. Hence, UUV

piggybacks control information in the acknowledgment messages of the operations in

order to determine update participants.

134

When the coordinator receives an unsolicited update-vote from a participant, it

changes the status of the participant from read-only to update and resets the status

of the transaction.

In the case that each participant site employs a pessimistic concurrency control

protocol that also avoids cascading abort

(5)

, such as strict two-phase locking (that

we discussed in Chapter 2), a transaction is guaranteed to be serializable and recov-

erable after all its operations have been executed and acknowledged

(5)

. Thus, the

coordinator of a transaction is guaranteed that the transaction is serializable and

recoverable at each read-only participant after the execution of each read operation.

However, in the case that a participant employs an optimistic concurrency control

protocol, this is not true and the participant has to validate the transaction before

acknowledging each read operation as long as it has not already sent an unsolicited

update-vote as part of a previous operation's acknowledgment.

When a transaction �nishes its execution and submits its �nal commit request, the

transaction's coordinator checks its protocol table to determine which participants

have sent unsolicited update-vote as part of their operations' acknowledgments. For

each participant that has sent an unsolicited update-vote, the coordinator knows that

the participant is an update participant and sends to the participant a prepare to

commit message. For each participant that has not sent an an unsolicited update-

vote, the coordinator excludes the participant from voting by sending a read-only

message indicating to the participant that the transaction has been terminated and

it can release all the resources held by the transaction. When a read-only participant

receives a read-only message, it releases all the resources held by the transaction

without writing any log records.

In the next section, we discuss three other methods that we have considered to

determine read-only participants without having to (explicitly) poll their votes.

135

6.6.2 Other Methods

For completeness, we discuss in this section three other methods that we have

considered to determine read-only participants and point out their limitations.

1. By predeclaration in which each transaction indicates that it will perform only

read operations

(4)

.

2. By analyzing each submitted (high level) operation of each transaction.

3. By assuming that each participant knows when it has executed the last oper-

ation on behalf of a transaction. In this case, the participant sends its vote

proclaiming itself as read-only in its own initiative once it recognizes that the

transaction has no more operations to process.

The �rst method is very restrictive because transactions are written in an ad hoc

fashion and their behavior cannot be determined a priori except in very special cases.

The second method assumes that a coordinator is able to process and analyze high

level operations as well as the return results from the participants. To realize this

method requires expansion in the functionality of coordinators in current database

management systems as opposed to UUV which requires the interpretation of a bit

in acknowledgment messages. The third method assumes that the coordinator either

submits to a participant all the operations at the same time, which is again a form

of predeclaration, or indicates to the participant the last operation at the time the

operation is submitted, as it is the case in the unsolicited vote optimization

(35)

. As

we discussed in Section 3.2.5, the latter is possible if each transaction has knowledge

about data distribution and indicates to the coordinator the last operation to be

executed at a participant.

136

6.7 Applying UUV to Presumed Commit Protocol variants

In this section, we apply UUV with PrC variants. In the next subsection we apply

UUV to two-level PrC while in Subsection 6.7.2, we apply UUV to multi-level PrC,

RPrC and ReSPrC. In both subsections, we compare the performance PrC variants

when combined with UUV to the performance PrA variants when combined with the

same optimization.

6.7.1 UUV with Presumed Commit Protocol

By combining UUV with PrC, a coordinator does not have to poll or wait for

the votes of read-only participants. Therefore, for read-only transactions, UUV not

only saves a message from each participant but it also eliminates the waiting time for

all the votes to arrive and, hence acknowledges the transaction commitment earlier

when compared with the traditional read-only optimization. For a partially read-only

transaction, on the other hand, acknowledging the transaction commitment might be-

come faster than the standard read-only optimization. This is possible, for example,

in the case that some read-only participants are connected with the coordinator via

low speed communication links while their update counterparts are connected with

the coordinator via high speed communication links. In this case, the read-only par-

ticipants become the bottleneck in the commit processing using the traditional read-

only optimization. For this reason, a �nal decision pertaining to a partially read-only

transaction is reached faster with fewer coordination messages by using UUV com-

pared to the traditional read-only optimization. Hence, by combining UUV with PrC

(similarly with ReSPrC) the cost associated with read-only transactions is cheaper

than in PrA combined with the traditional read-only optimization.

The cost of PrA combined with UUV is the same as in PrC combined with UUV.

This is because, using UUV, both PrA and PrC will incur the same coordination

message complexities without any logging activities. Speci�cally, using the UUV, a

coordinator that uses PrC should not force an initiation log record because it will

know that the transaction is read-only by the time the transaction submits its �nal

137

commit request. In this case, the coordinator discards any information pertaining to

the transaction, acknowledges the commitment of the transaction and sends out a

read-only �nal decision to each participant.

For partially read-only transactions, in the two-level transaction execution model,

it is cheaper to use PrC with UUV if these transactions are most probably going to

commit even though there is an extra forced log write at the coordinator's site (i.e.,

the initiation record). This is because PrC allows for a reduction of one forced log

write (i.e., the commit decision record) and a message from each update participant.

In addition, a read-only participant does not su�er from the cost associated with

the forcing of the initiation record as it would have been the case if the traditional

read-only optimization were used. Therefore, it is cheaper to use PrC with UUV even

if there is only a single site where a transaction has submitted update operation(s)

and will �nally be committed.

6.7.2 UUV with Multi-Level Presumed Commit Protocol Variants

For a read-only transaction, neither the root coordinator nor any cascaded coor-

dinator force writes initiation records for the transaction by using UUV with the

multi-level PrC. Hence, the cost associated with commit processing of read-only

transactions becomes the same in both multi-level PrA and multi-level PrC when

they are combined with UUV while multi-level PrC combined with UUV is cheaper

than multi-level PrA combined with the traditional read-only optimization.

For a partially read-only transaction, a cascaded coordinator in multi-level PrC

has to send an unsolicited update-vote if any of its descendants has performed an

update operation. Such a cascaded coordinator participates in the voting phase and

force writes an initiation record. However, a leaf read-only participant does not su�er

from the cost of forcing the initiation record at its direct ancestor. This is because

the direct ancestor will send a read-only message to the participant without having

to wait for the forced record to be in the stable log. Thus, none of the participants in

a read-only branch in a transaction's execution tree will su�er from the cost of any

138

initiation records if the whole branch up to the root coordinator is read-only.

By combining UUV with RPrC, the root coordinator of a read-only transaction

also does not force write an initiation record. For a partially read-only transaction,

since RPrC eliminates intermediate initiation records, a read-only participant will

su�er from at most a single forced write (i.e., an initiation record at the root coor-

dinator). Hence, the cost of commit processing for a committing, partially read-only

transaction in RPrC is less than in multi-level PrA considering the saving in the

total number of acknowledgment messages and the number of forced log writes at

the participants. The savings in the number of acknowledgment messages and forced

log writes are further magni�ed for update transactions. For example, there are N

extra messages and N � 1 forced log writes in multi-level PrA compared with RPrC

for a committing transaction where N is the number participants in the transaction

tree excluding the root coordinator

1

.

6.8 Summary

The presumed abort protocol (PrA) and the presumed commit protocol (PrC)

are two competing two-phase commit variants. The former reduces the cost asso-

ciated with aborting transactions while the latter reduces the cost associated with

committing transactions. This makes only one variant appropriate at any given time

depending on the behavior of transactions and the reliability of the distributed envi-

ronment. Given the traditional networking environment and the behavior of transac-

tions, the argument has been in favor of PrA rather than PrC. This is due to the cost

of the forced initiation records associated with PrC even for read-only transactions.

However, given the reliability characteristics of modern distributed environments and

the high probability of a transaction of being committed rather than aborted after

all its operations have been executed and acknowledged, we argued in favor of PrC

by proposing two new PrC variants. Namely, rooted PrC (RPrC) and re-structured

PrC (ReSPrC).

1

Notice that the root coordinator force writes two log records in RPrC compared with one in

multi-level PrA, hence we have N � 1 extra forced log writes in multi-level PrA.

139

Both RPrC and ReSPrC eliminate all intermediate initiation records from cas-

caded coordinators in the multi-level transaction execution model, which is the model

adopted by the current transaction processing standards and commercial systems.

Furthermore, regardless of the depth of a transaction's execution tree, there is at

most a single forced initiation record in both variants compared to multi-level PrC,

while the new PrC variants still maintain the low count in the total number of mes-

sages and forced log writes for a committing transaction compared to multi-level

PrA.

For read-only transactions, we proposed a new read-only optimization that is

called the unsolicited update-vote optimization and showed that the cost associated

with read-only transactions in PrC and the newly proposed variants is exactly the

same as in PrA. This is also true for read-only participants of partially read-only

transactions in both PrC and PrA as well as ReSPrC. For a partially read-only trans-

action in RPrC, a read-only participant might su�er from the cost of a single forced

initiation record at the root coordinator. In general, however, PrC variants involve

lower number of coordination messages and total forced log writes compared with

PrA variants when committing update as well as partially read-only transactions.

In conclusion, this work nulli�es the basis for the argument that exclusively favors

PrA, i.e., the low cost associated with read-only transactions and transactions in

the multi-level transaction execution model, and makes the case that PrC should

become part of future protocol standards. In addition, ReSPrC and RPrC as well

as the unsolicited update-vote optimization provide su�ciently appealing e�ciency

characteristics that make them very attractive to be adopted in commercial systems

that use a two-phase commit variant that also force writes initiation records such

as the one's based on IBM SNA LU 6.2 architecture, the de facto standard of the

industry

(6)

.

In the next chapter, we further strengthen our argument by showing how we can

interoperate database systems that uses PrN, PrA and PrC protocols in the context

of multidatabase systems, despite their con
icting presumptions about the outcome

of transactions and without violating the autonomy of the constituent database sites.

140

7.0 DEALING WITH INCOMPATIBLE PRESUMPTIONS OF

TWO-PHASE COMMIT PROTOCOLS

In this chapter, we discuss the issue of compatibility among atomic commit pro-

tocols (ACPs) in a multidatabase system (MDBS) environment. In MDBSs, in which

all local sites support an ACP, the incompatibility of the various ACPs may be due

to the di�erences in the semantics of their coordination messages or actions. In the

case of the three commonly known two-phase commit variants (namely, the presumed

nothing (PrN), presumed abort (PrA) and presumed commit (PrC) protocols), as we

show, the incompatibility arises because of their con
icting presumptions about the

outcome of transactions in the presence of failures. Furthermore, we show that sup-

porting a visible prepare to commit state in which a participant is prohibited from

unilaterally committing or aborting a transaction after it has voted \yes", is not

enough for a successful integration of ACPs in an operational fashion, because the

outcome of some transactions might have to be remembered forever.

Thus, in order to be able to integrate these ACPs in a MDBS, we de�ne an op-

erational correctness criterion that allows terminated transactions to be forgotten.

We propose Presumed Any (PrAny), a two-phase commit protocol variant that suc-

cessfully integrates PrN, PrA and PrC protocols

(78)

. We choose to integrate PrN

and PrA because they have been widely implemented in existing systems, and PrC

because it is expected to become part of the standards, as we argued in Chapter 6.

In the next section, we discuss the compatibility of PrN, PrA, and PrC, show-

ing, by means of a protocol called union two-phase commit protocol (u2PC), that

supporting a visible prepare to commit state is not su�cient for a practical inte-

gration of ACPs. In Section 7.2, we �rst derive another protocol from u2PC called

u2PC* in which the coordinator ignores protocol violations due to \unexpected" (ex-

tra) messages but not due to \expected" (missing) messages. Even though u2PC*

guarantees the atomicity of global transactions, we show that the coordinator has to

141

remember the outcome of some transactions forever. Then, based on the two proto-

cols, we distinguish functional correctness from operational correctness and express

the practical requirements of a commit protocol with a criterion, called operational

correctness. In Section 7.3, we present PrAny and prove its correctness with respect

to this operational correctness criterion.

7.1 Compatibility of Two-Phase Commit Protocol Variants

In this section, we examine the compatibility of PrN, PrA and PrC by assuming

that all three can coexist in a MDBS and that the global transaction manager (GTM)

which is responsible for the atomic commitment of global transactions (see Section

3.2.1), can use any of the three variants. GTM also knows the protocol used by

each participant. That is, the coordinator knows what messages to expect from each

participant and interoperates with participants implementing a di�erent protocol

than its own protocol by ignoring message violations of its protocol. A protocol

violation with respect to messages occurs when (1) GTM receives an unexpected

type of a message from a participant, or (2) GTM does not wait to receive a type

of a message from a participant whose protocol does not generate it. We call this

integrated GTM protocol union two-phase commit protocol (u2PC), indicating the

protocol used by the coordinator in parenthesis, e.g., u2PC(PrC) indicates that the

coordinator employs PrC.

As shown in Figure 27 (a), let us consider the commitment of a transaction that

has executed at two participants using u2PC. Assume that the coordinator and one

of the participants employ PrC while the other participant employs PrA. The voting

phase is the same in both variants. The only di�erence between the two variants,

as far as the coordination messages are concerned, occurs in the decision phase. In

the event that the coordinator of the transaction makes a commit �nal decision, in

accordance with PrC, the coordinator does not expect any commit acknowledgment

messages. However, the PrA participant will acknowledge the commit decision. By

knowing that this participant will send an acknowledgment, the coordinator will not

consider this message, although it is a violation of its protocol. With respect to

142

Prepare

Prepared
Log Record

Prepared
Log Record

Active

State

Prepared
Yes

Prepare

Yes

CommitCommit

CommittedWrite Commit
Log Record

PrA Participat PrC Paricipant

Ack

Coordinator

Record

Committing

Prepared

Active

State

Committed

Commit Log
Record

Initiation log
Record

Commit Log

Force-write

Force-write

Force-write

Force-write

Force-write

Message
Ignored

(a) Commit case.

PrA Participat

Prepared
Log Record

Prepare

Yes

Coordinator PrC Paricipant

Prepared
Log Record

State

Active

Prepared

Aborting
Abort Log
Record

Aborted

Prepare

Yes

AbortAbort

Write End
Log Record

Ack

Write Abort
Log Record

Prepared

Aborted

Active

State

Initiation log
Record

Force-write

Force-write

Force-write

Force-write

(b) Abort case.

Figure 27 The union two-phase commit protocol (u2PC(PrC)).

143

the logging activities at the coordinator, once the coordinator makes the commit

�nal decision, it forgets the transaction, discarding all information pertaining to the

transaction from its protocol table and if necessary, garbage collects the transaction's

log records. Since the coordinator employs PrC, it will always be able to respond to

the inquiries of the participants, in case of a failure, with a commit �nal decision,

using the PrC presumption.

Now, consider another transaction that has �nished its execution at the same two

participants and the coordinator has decided to abort the transaction, as shown in

Figure 27 (b). In this case, the PrA participant never acknowledges an abort decision.

Hence, the coordinator forgets the outcome of the transaction once it has received the

acknowledgment of the PrC participant and without waiting for an acknowledgment

from the PrA participant. This achieves atomicity as long as there are no failures.

Otherwise, the atomicity of the transaction might be violated. For example, if the

PrA participant fails after it has received the �nal outcome but before writing it in its

stable log, the participant will inquire about the outcome of the transaction as part of

its recovery procedure. If the coordinator has already received the acknowledgment

from the PrC participant and forgotten about the transaction, the coordinator will

wrongly respond with a commit �nal decision (using the PrC presumption) which

clearly violates the atomicity of the transaction since the transaction has been aborted

at the PrC participant.

A similar situation occurs if the coordinator employs PrN or PrA. However, in this

case, the atomicity of committed transactions might be violated. All three situations

can be generalized in the following theorem:

Theorem 2: It is impossible to ensure global atomicity in a MDBS using u2PC

when transactions execute at both PrA and PrC participants.

Proof: We prove the above theorem by considering all three possible cases of

GTM using PrC, PrA and PrN and a transaction executing on two participants,

one using PrA and the other PrC. For each case, we provide an example that leads

144

to an atomicity violation, showing that it is impossible to ensure global atomicity

using u2PC.

Case I { u2PC(PrC): Assume that the GTM uses PrC. We have proven this case

in our motivating example above.

Case II { u2PC(PrA): Assume that the GTM uses PrA and decides to commit

a transaction. In this case, the PrA participant will acknowledge the commit

decision but not the PrC participant. Hence, the GTM forgets the transaction

once it receives the acknowledgment from the PrA participant. Now, it is possible

for the PrC participant to fail before receiving the commit decision and for its

inquiring message to arrive after the GTM has received the acknowledgment from

the PrA participant and forgotten the transaction. In this case, the GTM will

respond with an abort decision (by the PrA presumption) which violates the

atomicity of the transaction.

Case III { u2PC(PrN): Assume the GTM uses PrN and the GTM decides to

commit a transaction. This is similar to case II above since PrN uses an implicit

PrA presumption if it does not remember a transaction. 2

Clearly, u2PC might violate transaction atomicity because a coordinator prema-

turely forgets the outcome of transactions and is forced to respond with a decision

using the presumption of its protocol to an inquiring message, although the semantics

of the inquiring message assume a coordinator who uses an opposite presumption. In

the next section, we consider a variation of u2PC that ensures atomicity but has the

drawback that it has to remember the outcome of some transactions forever.

7.2 Operational Correctness

As mentioned in the previous section, u2PC cannot ensure transaction atomicity

because a coordinator infers the outcome of a terminated transaction in the absence

145

of any record about the transaction based on its own protocol presumptions, ignor-

ing the potentially con
icting presumption of the participants. This suggests that

a coordinator can avoid dealing with con
icting presumptions if it forgets a trans-

action only after receiving the necessary acknowledgments from all participants in

accordance to its protocol. Such an integrated protocol can be derived from u2PC,

denoted as u2PC

�

, by requiring a coordinator to wait for expected messages accord-

ing to its protocol and only ignore protocol violations due to unexpected (extra)

messages.

Let us consider the case of using u2PC

�

(PrC) in the example MDBS of the pre-

vious section, in which GTM uses PrC and a transaction executes on two partic-

ipants one employing PrA and the other PrC. If the coordinator decides to abort

the transaction, the coordinator will expect acknowledgment messages from both the

participants according to u2PC

�

(PrC) before forgetting the transaction. But, a PrA

participant never acknowledges an abort decision and hence the coordinator can never

forget the transaction. Since the coordinator always remembers the outcome of the

transaction in spite of failures, the coordinator will always be able to respond to any

inquiring message with the correct outcome of the transaction. Thus, u2PC

�

(PrC)

ensures the atomicity of a transaction.

Clearly, u2PC

�

is correct but not practical since a coordinator has to maintain a

record of some transactions forever. This leads us to distinguish correctness of ACPs

into functional correctness which only captures the atomicity{guarantee requirement

and operational correctness which requires, in addition, that the coordinator and

participants to be able to eventually forget about the outcome of terminated trans-

actions.

De�nition 1: The integration of di�erent ACPs is operationally correct if and

only if

1. The coordinator and all the participants reach consistent decisions regarding

the outcome of transactions and regardless of failures.

2. The coordinator can, eventually, discard all the information pertaining to

terminated transactions from its protocol table and garbage collect its log.

146

3. All participants can, eventually, forget about transactions and garbage col-

lect their logs.

Theorem 3: It is impossible to achieve operational correctness if the coordinator

is using u2PC

�

in the presence of transactions that execute at both PrA and PrC

participants.

Proof: As in theorem 2, we prove this theorem by considering all three possi-

ble cases of GTM using PrC, PrA and PrN and a transaction executing on two

participants, one using PrA and the other PrC. For each case, we provide an ex-

ample that shows that the GTM needs to remember the outcome of a transaction

forever.

Case I { u2PC

�

(PrC): Assume that the GTM uses PrC. We have proven this case

in our example above, showing that, in u2PC

�

(PrC), the GTM has to remember

the outcome of aborted transactions forever.

Case II { u2PC

�

(PrA): Assume that the GTM uses PrA and decides to commit

a transaction. In this case, the PrA participant will acknowledge the commit

decision but not the PrC participant. Hence, the GTM, in u2PC

�

(PrA), has to

remember the outcome of committed transactions forever.

Case III { u2PC

�

(PrN): Assume the GTM uses PrN and the GTM decides to

commit a transaction. This is similar to Case II above. That is, since the PrC par-

ticipant will not acknowledge the commit decision and the GTM, in u2PC

�

(PrN),

has to remember the outcome of committed transactions forever. Similarly, the

GTM, in u2PC

�

(PrN), has to remember the outcome of an aborted transaction

as in Case I since the PrA participant will not acknowledge an abort decision. 2

Thus, to maintain operational correctness in a MDBS, a coordinator should be

able to, eventually, forget the outcome of transactions without violating the consis-

tency of its decisions. We call this a safe state. Intuitively, a coordinator is in a safe

147

state with respect to a transaction if (1) it forgets a transaction after all participants

have acknowledged its decision (as in PrN) or (2) it forgets a transaction without

receiving acknowledgments from some participants but can use a single presumption

that is consistent with the transaction's �nal outcome.

Realizing the �rst condition that satis�es the safe state concept requires modifying

either PrA or PrC to acknowledge abort or commit decisions, respectively. This is

indeed the case of the generalized presumed abort protocol that we discussed in

Section 3.3.1 in which PrA protocol is modi�ed to interoperate it with the IBM-

PrN. However, this is not an acceptable solution because it violates the autonomy

of the constituent local database systems in the multidatabase environment. For

this reason, we propose a safety criterion that realizes the second condition of the

safe state concept without modifying neither PrA nor PrC protocols, preserving the

autonomy of local database management systems.

De�nition 2: (De�nition of safe state)

A coordinator is in a safe state with respect to the outcome of a global transaction

G, if G has been aborted and only the presumed abort presumption holds, or G

has been committed and only the presumed commit presumption holds.

The above safety criterion can be formally expressed in a �rst order predicate

logic with a precedence relation

(79; 80; 81)

. In the following de�nition, H rep-

resents the complete history of the execution of a transaction containing all the

events pertaining to the transaction and indicating the (partial) order in which these

events occur. The signi�cant events for the de�nition of the safety criterion are:

Decide

C

(Abort

G

) which denotes that the coordinator C decides to abort a global

transaction G and Decide

C

(Commit

G

) which denotes that the coordinator decides

to commit G. DeletePT

C

(G) denotes that the information pertaining to G is deleted

from the protocol table of the coordinator. INQ

g

i

denotes an inquiry message from

a participant regarding a subtransaction g

i

of G. Respond

C

(Outcome

g

i

) denotes the

reply of the coordinator to the inquiry message. The predicate �!�

0

is true if event

� precedes event �

0

in H. It is false, otherwise.

148

De�nition 3: (Formal de�nition of safe state)

SafeState

C

(G))

((Decide

C

(Abort

G

) 2 H ^ 8g

i

2 G (DeletePT

C

(G))!INQ

g

i

))

Respond

c

(Abort

g

i

) 2 H) _

((Decide

C

(Commit

G

) 2 H ^ 8g

i

2 G (DeletePT

C

(G))!INQ

g

i

))

Respond

C

(Commit

g

i

) 2 H)

Our safety criterion implies that some information including the outcome of trans-

actions has to be remembered as long as more than one presumption is possible. In

the next section, we present the presumed any (PrAny) protocol which implements

the safety criterion. PrAny assumes that a coordinator knows the protocols used

by the di�erent LDBMSs and uses this knowledge to decide when to discard the

information about a transaction.

7.3 The Presumed Any (PrAny) Protocol

In this section, we describe the PrAny protocol that integrates PrN, PrA and PrC

according the operational correctness criterion that we have de�ned above. First, we

describe PrAny during normal processing. Then, in Section 7.3.2, we discuss the

recovery aspects of PrAny in the case of failures. Finally, in Section 7.3.3, we prove

the correctness of the PrAny protocol.

7.3.1 Description of the PrAny Protocol

In PrAny, a coordinator records the 2PC protocol employed by each participant

with active transactions in a table called active participant protocols (APP) table

that is maintained in main memory. The APP is updated either from a system table,

called the participants' commit protocol (PCP), or based on responses from the agents

of the participating sites.

149

A coordinator refers to its APP to decide which protocol to use with the par-

ticipants in the execution of a transaction. The coordinator selects PrN if all the

participants use PrN. Similarly, it selects PrA if all the participants use PrA whereas

it decides to use PrC if all the participants use PrC. By using PrN, PrA or PrC

with all the participants, the coordinator will always be in a safe state if it does not

remember the �nal outcome of a transaction.

In the event that some of the participants employ PrA while the others employ

PrN or PrC, the coordinator selects PrAny. From the coordinator's perspective,

PrAny consists of the same two phases, i.e., the voting phase and the decision phase,

as in PrN, PrA and PrC, as shown in Figure 28. The only distinction between PrAny

and the other 2PC variants is in the logging activities at the coordinator's site and the

time at which the coordinator can safely forget about the outcome of transactions.

As shown in Figures 28 (a) and 28 (b), in PrAny, the coordinator starts the

voting phase by force writing an initiation record which includes the identities of the

participants, as is the case in the PrC variant. The initiation record also includes the

protocol used by each participant. Then, the coordinator sends to each participant

a prepare to commit request. Once the coordinator receives the votes from all the

participants, it force writes a commit record if the decision is commit (Figure 28

(a)). If the decision is abort, no decision record is written into the log (Figure 28

(b)). Then, the coordinator sends its �nal decision to all the participants. On a

commit �nal decision, the coordinator writes a non-forced end record once all the

PrN and PrA participants acknowledge the decision. On an abort �nal decision,

on the other hand, the coordinator writes an end record once all the PrN and PrC

participants acknowledge the decision. After that, the coordinator writes an end

record in its log and discards all information pertaining to the transaction from its

protocol table.

150

Prepare

Prepared
Log Record

Prepared
Log Record

Active

State

Prepared
Yes

Prepare

Yes

CommitCommit

CommittedWrite Commit
Log Record

PrA Participat PrC Paricipant

Ack

Write End
Log Record

Coordinator

Record

Committing

Prepared

Active

State

Committed

Commit Log
Record

Initiation log
Record

Commit Log

Force-write

Force-write

Force-write

Force-write

Force-write

(a) Commit case.

PrA Participat

Prepared
Log Record

Prepare

Yes

Coordinator PrC Paricipant

Prepared
Log Record

State

Active

Prepared

Aborting
Abort Log
Record

Aborted

Prepare

Yes

AbortAbort

Write End
Log Record

Ack

Write Abort
Log Record

Prepared

Aborted

Active

State

Initiation log
Record

Force-write

Force-write

Force-write

Force-write

(b) Abort case.

Figure 28 The presumed any protocol.

151

7.3.2 Recovery in the PrAny Protocol

As in all other 2PC commit protocols, communication and site failures are de-

tected by timeouts. The recovery procedure in case of communication and partici-

pants' failures are handled in a manner similar to the way they are handled in PrN,

PrA and PrC protocols. According to the behavior of PrN, PrA and PrC, the coor-

dinator expects those participants that employ PrN and PrA to acknowledge commit

�nal decisions but not those participants that employ PrC (Figure 28 (a)). The coor-

dinator can forget about the outcome of a committed transaction once the PrN and

PrA participants acknowledge the commit decision, knowing that only a participant

that employs PrC might inquire about the decision in the future. If a PrC partici-

pant inquires about a (commit) �nal decision after the coordinator has forgotten the

transaction, the coordinator, knowing that the participant uses PrC, will direct the

participant to commit the transaction, by the presumption of PrC.

Similarly, if a coordinator makes an abort �nal decision, it expects only those

participants that employ PrN and PrC to acknowledge the decision but not those

employing PrA (Figure 28 (b)). Hence, the coordinator can forget about the out-

come of an aborted transaction once the PrN and PrC participants acknowledge the

abort decision. If a PrA participant inquires about an (abort) �nal decision after

the coordinator has forgotten the transaction, the coordinator, knowing that the

participant uses PrA, will direct the participant to abort the transaction, by the

presumption of PrA.

After a failure, at the beginning of its recovery procedure, the coordinator re-

builds its protocol table by analyzing its stable log. For each transaction that has

a decision log record without an initiation record, it means that PrN or PrA has

been used for its commitment. For each such transaction without an end record, the

coordinator adds the transaction in its protocol table and re-initiates the decision

phase with the recorded decision in the log. In the case of PrA, the decision is always

commit since PrA requires only commit decisions to be recorded in the log. In the

case of PrN, the decision could be either commit or abort.

152

For each transaction that has an initiation record, it means that PrC or PrAny

has been used for its commitment. Depending on the identities of the participants

recorded in the initiation record and the protocols that they use, the coordinator

determines which of the protocol was used for the commitment of the transaction.

For each such transaction that has used PrC for its commitment and has no commit

or end log record, the coordinator adds the transaction in its protocol table and

re-initiates the decision phase with an abort decision in accordance with PrC.

Finally, for each transaction that has used PrAny for its commitment and has

only an initiation record, or has initiation and commit records but no end record,

the coordinator adds the transaction in its protocol table. In the former case, since

either no decision was made or abort was decided before the failure, the coordinator

submits an abort decision to the PrN and PrC participants. It does not include

the PrA participants in accordance with PrA

1

. In the latter case, since a commit

decision record is found, the coordinator submits a commit decision to the PrN and

PrA participants but, in accordance to PrC, not to PrC participants.

As during normal processing, after sending out a decision, the coordinator waits

for acknowledgments from PrN and PrC participants in the case of an abort decision

and from PrN and PrA participants in the case of a commit decision. When a

participant receives a �nal decision, it enforces and acknowledges the decision if it has

not already enforced the decision. Otherwise, the participant simply acknowledges

the decision

2

. When all the expected acknowledgments arrive, the coordinator writes

an end log record and forgets about the transaction.

1

A coordinator in PrA never re-submits an abort decision to the participants after its failure

because it will not have any recollection about aborted transactions. It is the responsibility of the

participants to inquire about the outcome of such transactions. Similarly, a coordinator in PrC

never re-submits commit decisions to the participants after its failure.

2

A participant without any memory regarding a transaction is assumed to have already received

and enforced the decision and discarded all information pertaining to the transaction.

153

7.3.3 Proof of Correctness

In Chapter 3, we thoroughly discussed the behavior of PrN and how it recovers

after failures. That discussion provides a proof of correctness for PrN since we have

exhaustively considered all possible cases of failures. That is, what would happen if

a failure occurs and at what point during the course of PrN. We will use the same

strategy to show the correctness of PrAny.

Theorem 4: The PrAny protocol satis�es the operational correctness criterion.

Proof:

To show the correctness of PrAny, we need to show that all the three require-

ments of operational correctness are satis�ed. That is, (1) The coordinator and all

the participants reach consistent decisions regarding the outcome of transactions

and regardless of failures, (2) the coordinator can, eventually, discard all the infor-

mation pertaining to terminated transactions from its protocol table and garbage

collect its log and (3) all participants can, eventually, forget about transactions

and garbage collect their logs, are satis�ed.

PrAny consists of the same two phases as PrN. Hence, the �rst and the third

requirements of the operational correctness criterion are satis�ed since all partic-

ipants will reach an agreement. The only remaining requirement that needs to

be proven is the third one which requires that the coordinator should eventually

be able to forget about the outcome of transactions. We prove the second re-

quirement by considering the two possible outcomes of transactions. The proof

proceeds by contradiction.

Commit Case: Assume that the coordinator has made a commit decision and after

forgetting the outcome of the transaction, it replies to an inquiry message with

an abort decision.

If the inquiring participant is PrC, then the coordinator will use the commit

presumption of PrC and will respond with a commit decision which contradicts

154

the initial assumption.

In order to reply with an abort, it means that coordinator has used the abort

presumption. This means that the message is from a PrA participant, but this is

impossible since all PrA and PrN participants must have acknowledged the com-

mit decision in order for the coordinator to forget the outcome of the transaction.

Similarly, it is impossible for the inquiry message to be from a PrN participant.

Abort Case: Assume that the coordinator has made an abort decision and after

forgetting the outcome of the transaction, it replies to an inquiry message with a

commit decision.

If the inquiring participant is PrA, then the coordinator will use the abort

presumption of PrA and will respond with an abort decision which contradicts

the initial assumption.

In order to reply with an commit, it means that the coordinator has used the

commit presumption. This means that the message is from a PrC participant,

but this is impossible since all PrC and PrN participants must have acknowl-

edged the abort decision in order for the coordinator to forget the outcome of the

transaction. Similarly, it is impossible for the inquiry message to be from a PrN

participant. 2

7.4 Summary

In this chapter, we showed that it is possible to integrate incompatible atomic

commit protocols in a multidatabase system from a functional point of view as long

as these protocols support a visible prepare to commit state. However, this result is

not enough for practical integration because the outcome of some transactions might

have to be remembered forever. Therefore, we de�ned an operational correctness

criterion for integration that allows transactions to be forgotten.

Based on our proposed operational correctness criterion, we developed a mul-

tidatabase two-phase commit (2PC) protocol, called Presumed Any (PrAny), that

integrates the presumed nothing, presumed abort and presumed commit 2PC variants

155

despite their con
icting presumptions about the outcome of transactions and without

violating the autonomy of the local database systems.

This chapter concludes the contributions of this dissertation. In the next chapter,

we summarize our contributions, discuss our expected future work in the context of

atomic commit protocols and conclude this dissertation.

156

8.0 SUMMARY AND CONCLUSIONS

Research in the area of database systems is one of the most active areas in com-

puter science and technology. This is due to the fact that current and future applica-

tion software systems require controlled access to data with enhanced reliability guar-

antees despite concurrency and failures. These guarantees are provided by database

management systems that support the traditional ACID (i.e., atomicity, consistency,

isolation and durability) transaction properties.

The atomicity property of distributed transactions can only be ensured with the

use of an atomic commit protocol. Atomic commit protocols received extensive work

in the late seventies to the mid eighties. After that, the database system industry

took over and the standardization organizations picked, what was seemingly the best

choice among the available atomic commit protocols at that time.

Due to the great impact of atomic commit protocols on the performance of any

distributed database system, we were motivated to investigate this area given recent

advances in hardware, software and network technology. The results of our investi-

gations do not only contain theoretical characterizations, but also contain practical

and well engineered atomic commit protocols.

In this chapter, we �rst summarize the contributions of this dissertation. Then, in

Section 8.2, we discuss expected future work in the area of atomic commit protocols.

In Section 8.3, we conclude this dissertation.

8.1 Summary

The focus of this dissertation was on atomic commit protocols (ACPs) in two

distributed database environments, namely, distributed database systems (DDBSs)

157

2PC

IBM-PrN Cooperative Decentralized 3PC 4PCLinearUV

EPNPrCReSPrCRPrC

PrCPrA

ReSPrA PrAny

Enhance performance during normal processing and/or integrate incompatible ACPs Reduce blocking after a failure

CL

IYV

IYV-WCC

Figure 29 Our contributions in the evolution of ACPs.

and heterogeneous multidatabase systems (MDBSs). In the context of DDBSs, the

contributions of this dissertation dealt with the issue of performance of ACPs whereas,

in the context of MDBSs, its contributions dealt with the issue of compatibility of

ACPs. Figure 29 depicts (in the area covered with a box), the new two-phase commit

variants that this dissertation introduced. We list the four major contributions of

this dissertation below.

1. We developed two highly e�cient ACPs by exploiting the characteristics of future

gigabit-networked distributed database systems.

The �rst protocol is called the implicit yes-vote (IYV) protocol which is a two-

phase commit protocol variant that is targeted towards future distributed database

systems (Chapter 4). In IYV, we exploit the semantics of the strict two-phase locking

concurrency control protocol to eliminate the (explicit) voting phase of the two-

phase commit protocol, and the characteristics of high-speed networks to facilitate

recovery through our notion of replicated write-ahead logging (RWAL). In RWAL we

replicate the redo parts of the participants' logs at the coordinator sites, given that

the propagation latency is the dominant component of the overall communication

cost in high-speed networks, while the migration of large amounts of data is not a

problem.

158

Furthermore, after a participant failure, the IYV protocol allows partially exe-

cuted transactions that are still active at other participants to resume their execution

after the participant has recovered. We achieve forward recovery in IYV by replicat-

ing read locks. That is, when a transaction acquires read locks at a participant, the

participant propagates the read locks to the transaction's coordinator. In this way,

after a failure, a participant can re-acquire all read locks pertaining to a transaction

from the transaction's coordinator and forward recover the transaction, if it is still

active at other participants.

Since it is expected that some database sites will be less reliable than others,

because they might use old technologies, we have also proposed implicit yes-vote

with delegation of commitment (IYV-WCC) for such less reliable sites. IYV-WCC

incorporates a novel coordination scheme that reduces the window of vulnerability of

IYV to blocking and minimizes the time required for the sites to become operational

after a failure. The new scheme combines the delegation of commitment technique

with a timestamp synchronization mechanism that does not require global clock syn-

chronization. Although this new scheme incurs extra coordination messages and log

writes compared to IYV, it enhances the performance of IYV during recovery in the

presence of less reliable sites. At the same time, it maintains the cost of commit pro-

cessing during normal processing below that of two-phase commit and its other well

known variants. We showed the performance of IYV and IYV-WCC and compared it

with other ACPs using the traditional analytical method that is based on evaluating

message, log and time complexities.

2. We evaluated the performance of IYV and four other ACPs as well as read-only

optimizations using simulation.

In our simulation study, we explicitly modeled (1) the propagation latency of the

communication network, (2) the overhead of the management of the database bu�er

and of
ushing the transaction and protocol execution log records and (3) the over-

head of recovery from site failures. By factoring in the e�ects of these aspects, we

revealed the hidden overhead of the ACPs that we evaluated in our study. Conse-

quently, our results re
ect more accurately, compared to other simulation studies,

159

the magnitude of performance di�erences on a system's performance when choosing

one ACP versus another.

Salient results of our study show that IYV is, in general, better than all the other

evaluated protocols during both normal processing and in the presence of one or two

failed sites at any given time. IYV is matched by coordinator log (CL) protocol under

some circumstances whereas, under others, CL is the worst among all the evaluated

protocols. Interestingly, with respect to the two-phase commit variants, the choice

of a protocol has very little impact on performance for the case of long transactions

as opposed to short ones. Further, performance enhancements due to a read-only

optimization are more pronounced with short transactions. Finally, we showed that

there is a cross-over point between the performance curves of presumed abort and

presumed commit protocols even under the assumption that all transactions are to

be committed when they reach their commit points. This result cannot be shown

using the traditional analytical method of performance evaluation which we used in

Section 3.2.8.1, showing that presumed commit protocol is, in general, better than

presumed abort protocol.

3. We showed that it is possible to design ACPs and optimizations that scale well in

future distributed database systems.

Although IYV is a highly e�cient ACP and can be extended to the more gen-

eral multi-level transaction execution model, it is not suitable for future distributed

database environments that require an explicit voting phase. Since future database

systems are expected to have a high probability of transactions being committed

rather than aborted, our investigations led us to revisit the presumed commit proto-

col in the context of the more general multi-level transaction execution model and to

develop two new presumed commit protocol variants that are called rooted presumed

commit (RPrC) and re-structured presumed commit (ReSPrC) (Chapter 6). Both

RPrC and ReSPrC eliminate all intermediate initiation log records of the original

presumed commit protocol at cascaded coordinators in the multi-level transaction

execution model. Whereas RPrC is more general than ReSPrC with respect to ap-

plicability, RPrC is less e�cient than ReSPrC.

160

For read-only transactions, we proposed a new read-only optimization that is

called the unsolicited update-vote optimization and showed that the cost associated

with read-only transactions in the original presumed commit protocol (PrC) and the

newly proposed variants is exactly the same as in the presumed abort protocol (PrA).

This is also true for read-only participants of partially read-only transactions in both

PrC and PrA as well as ReSPrC. For a partially read-only transaction in RPrC, a

read-only participant might su�er from the cost of a single forced initiation record at

the root coordinator. In general, however, PrC variants involve lower message and

log complexities compared to PrA variants, when committing update transactions as

well as partially read-only transactions.

Furthermore, our work nulli�es the basis for the classical argument that exclu-

sively favors PrA, i.e., the low cost associated with read-only transactions and trans-

actions in the multi-level transaction execution model, and makes the case that PrC

should become part of future protocol standards. Our arguments in favor of PrC

are further strengthened by the results of our simulation study that we presented

in Chapter 5. Our results show that the choice of a two-phase commit variant has

very little impact on performance in the case of long transactions as opposed to short

ones. In the case of short transactions, our results show that the presumed commit

protocol is, in general, better than presumed abort.

4. We showed how to interoperate ACPs that have incompatible presumptions about

the outcome of terminated transactions in the context of multidatabase systems.

In Chapter 7, we showed that it is possible to integrate incompatible atomic com-

mit protocols in a multidatabase system from a functional point of view as long as

these protocols support a visible prepare to commit state. However, this result is

not su�cient for a practical integration because the outcome of some transactions

might have to be remembered forever. Therefore, we de�ned an operational correct-

ness criterion for integration that allows transactions to be forgotten. Based on our

operational correctness, we introduced the concept of a safe state that de�nes when

a coordinator to be able to forget the outcome of terminated transactions.

161

Based on the characterization of the safe state concept, we developed a mul-

tidatabase two-phase commit (2PC) protocol, called Presumed Any (PrAny), that

integrates the presumed nothing, presumed abort and presumed commit 2PC variants

despite their con
icting presumptions about the outcome of transactions and without

violating the autonomy of the local database systems.

Our research in the area of atomic commit protocols that ensures the traditional

notion of transaction atomicity has highlighted some problems and provided answers

to them. As in an any ongoing research, more needs to be done, and we believe that

we have opened some areas that need further investigation. We list these areas in

the following section.

8.2 Future Work

This dissertation contributed a number of solutions to the issues of performance

and compatibility of ACPs in distributed database environments. Furthermore, it

opened new areas that require future investigation, some of which constitute our

plans for future work.

� As we mentioned at the end of Chapter 3, the implicit yes-vote protocol is not

applicable in some distributed database systems such as systems that involve

deferred consistency constraint validation that is performed at the commit time

of transactions. These systems require an explicit voting phase as part of the

prepare to commit state rather than an implicit one, which is the essence of

IYV. Since IYV is a highly e�cient ACP, as our results presented in Chapter 5

indicated, we need a method that makes IYV applicable in such systems while

still retaining its performance enhancement when compared to the presumed

abort and the presumed commit protocols that use an explicit voting phase.

� We have implemented a comprehensive simulation system to study the impact

of ACPs on the overall performance of a distributed database system. As part

of our future work, we expect to expand our studies to include the multi-level

162

transaction execution model. We would also like to conduct experiments on

forward recovery to measure the magnitude of performance gain when using

this notion.

� With respect to the traditional notion of atomicity of transactions, until re-

cently, there has been no atomic commit protocol tailored for real-time dis-

tributed database systems

(82)

. The search for an e�cient real-time ACPs has

just begun, and much work is needed to be done in this area. We have re-

cently investigated the applicability of implicit yes-vote in real-time distributed

database systems due to its e�ciency characteristics

(83)

. The e�ciency metric

in real-time database systems di�ers from the e�ciency metric in non-real time

distributed database systems. In the former environment, e�ciency depends on

the number of mission-critical transactions that are committed per unit time

rather than the total number of transactions that are committed per unit time,

which is the case in latter environment. Thus, the performance of implicit

yes-vote protocol needs further investigation in this direction.

� With respect to integrated ACPs, we need to extend our safety criterion and to

investigate tools and methods that will allow us to integrate other protocols.

� As mentioned above, the implicit yes-vote is not applicable in some systems.

Similarly, our simulation results (Chapter 5) indicate that the presumed abort

protocol is more e�cient than the presumed commit protocol at low system

loads. These two results reveal that there is no single ACP that can be con-

sidered the best with respect to performance and applicability even within the

same environment. That is, one ACP might be better than another during

some periods of time while the situation is reversed at other periods of time.

Thus, as part of our future work, we intend to investigate adaptive ACPs that

allow distributed database systems to switch from one protocol to another to

enhance e�ciency

(78)

.

163

8.3 Conclusions

The contributions of this dissertation lead us to draw the following conclusions.

� By exploiting the semantics of the underlying communication networks as well

as the operating and database management systems, we can develop highly

e�cient transaction processing protocols. For example, by factoring in the

semantics of data, we can develop high performance concurrency control and

recovery protocols. Similarly, by factoring in the semantics of concurrency

control and recovery protocols adopted by a transaction management system

as well as the characteristics of communication networks, we can develop highly

e�cient atomic commit protocols. Semantics-based techniques are promising

for the development of highly e�cient protocols in the context of distributed

database systems.

� By conducting extensive experimental studies, we can reveal systems behavior

that cannot be captured analytically. For example, experimental studies allow

us to compare di�erent techniques and point out their hidden overhead that

degrades systems performance which cannot be captured analytically to deter-

mine either the relative or the absolute performance of the di�erent techniques.

� By factoring in the state-of-the-art technology, a method that might not seem

to be feasible at a given point in time, might become the ultimate option at

another point in time. This means that the re-evaluation of all previous ideas is

an essential �rst step before seeking new solutions to a problem. Furthermore,

this has the implication that the database standards should evolve as older

methods again become applicable and newer methods are introduced.

Based on the contributions of this dissertation, we believe that the area of atomic

commit protocols, within the context of traditional atomicity of transactions, requires

further and extensive investigations from the research community and we hope that

this dissertation will provide the stimulus for further research and development in

this important area of transaction processing systems.

BIBLIOGRAPHY

165

BIBLIOGRAPHY

[1] Gray, J. \Notes on Data Base Operating Systems". In Bayer, R., Graham, R. M.,

and Seegmuller, G., editors, Operating Systems: An Advanced Course, Lecture

Notes in Computer Science. Vol. 60, pp. 393{481, Springer-Verlag, Berlin, 1978.

[2] Lampson, B. W. \Atomic Transactions". In Lampson, B. W., Paul, M., and

Siegert, H. J., editors, Distributed Systems - Architecture and Implementation:

An Advanced Course, Lecture Notes in Computer Science. Vol. 105, pp. 246-265,

Springer-Verlag, Berlin, 1981.

[3] Mohan, C. and Lindsay, B. \E�cient Commit Protocols for the Tree of Pro-

cesses Model of Distributed Transactions". In Proceedings of the 2nd ACM

SIGACT/SICOPS Symposium on Principles of Distributed Computing, pp. 76{

88, August 1983.

[4] Lindsay, C. Mohan B. and Obermarck, R. \Transaction Management in the R

�

Distributed Data Base Management System". ACM Transactions on Database

Systems, Vol. 11, No. 4, pp. 378{396, December 1986.

[5] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency Control and

Recovery in Database Systems. Adison-Wesley, Reading, Massachusetts, 1987.

[6] Gray, J. N. and Reuter, A. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann Publishers Inc., San Francisco, California, 1993.

[7] Lampson, B. and Lomet, D. \A New Presumed Commit Optimization for Two

Phase Commit". In Proceedings of the 19th International Conference on Very

Large Databases, pp. 630{640, Dublin, Ireland, August 1993.

[8] Samaras, G., Britton, K., Citron, A., and Mohan, C. \Two-Phase Commit Op-

timizations in a Commercial Distributed Environment". Distributed and parallel

Databases, Vol. 3, No. 4, pp. 325{360, October 1995.

[9] Stamos, J. and Cristian, F. \Coordinator Log Transaction Execution Protocol".

Distributed and Parallel Databases, Vol. 1, No. 4, pp. 383{408, 1993.

[10] Spiro, P., Joshi, A., and Rengarajan, T. K. \Designing an Optimized Transac-

tion Commit Protocol". Digital Technical Journal, Vol. 3, No. 1, Winter 1993.

[11] Rosenkrantz, D. J., Stearns, R. E., and Lewis II, P. M. \System Level Con-

currency Control for Distributed Database Systems". ACM Transactions on

Database Systems, Vol. 3, No. 2, pp. 178{198, June 1978.

166

[12] Skeen, D. \Non-blocking Commit Protocols". In Proceedings of the ACM SIG-

MOD International Conference on Management of Data, pp. 133{147, Ann Ar-

bor, Michigan, April 1981.

[13] Schwartz, P. M. and Spector, A. \Synchronizing Shared Abstract Data Types".

ACM Transactions on Computer Systems, Vol. 2, No. 3, pp. 223{250, August

1984.

[14] Weihl, W. \Commutativity{Based Concurrency Control for Abstract Data

Types". IEEE Transactions on Computers, Vol. 37, No. 12, pp. 1488{1505,

December 1988.

[15] Herlihy, M. P. and Weihl, W. \Hybrid Concurrency Control for Abstract Data

Types". In Proceedings of the 7th ACM Symposium on Principles of Database

Systems, pp. 201{210, March 1988.

[16] Badrinath, B. and Ramamritham, K. \Semantics{Based Concurrency Control:

Beyond Commutativity". ACM Transactions on Database Systems, Vol. 17, No.

1, pp. 163{199, March 1992.

[17] Chrysanthis, P. K., Raghuram, S., and Ramamritham, K. \Extracting Concur-

rency from Objects: A Methodology". In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp. 108{117, Denver, Col-

orado, May 1991.

[18] Liu, M., Agrawal, D., and Abbadi, A. El. \The Performance of Two-Phase

Commit Protocols in the Presence of Site Failures". In Proceedings of the 24th

International Symposium on Fault-Tolerant Computing Systems, 1994.

[19] Gupta, R., Haritsa, J., and Ramamritham, K. \Revisiting Commit Process-

ing in Distributed Database Systems". In Proceedings of the ACM SIGMOD

International Conference on the Management of Data, (To Appear) May 1997.

[20] Braginski, E. \The X/Open DTP E�ort". In Proceedings of the 4th Interna-

tional Workshop on High Performance Transaction Systems, Asilomar, Califor-

nia, September 1991.

[21] Upton IV, F. \OSI Distributed Transaction Processing, An Overview". In

Proceedings of 4th International Workshop on High Performance Transaction

Systems, Asilomar, California, September 1991.

[22] Gray, J. \The Transaction Concept: Virtues and Limitations". In Proceedings of

the 7th International Conference on Very Large Databases, pp. 144{154, Cannes,

France, September 1981.

[23] Haerder, T. and Reuter, A. \Principles of Transaction-oriented Database Re-

covery". ACM Computing Surveys, Vol. 15, No. 4, pp. 87{317, December 1983.

167

[24] Gray, J. N., Lorie, R. A., Putzulo, G. R., and Traiger, I. L. \Granularity of

Locks and Degrees of Consistency in a Shared Database". In Proceedings of the

1st International Conference on Very Large Databases, pp. 25{33, Framingham,

Massachusetts, September 1975.

[25] Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L. \The Notion of

Consistency and Predicate Locks in a Database System". Communications of

the ACM, Vol. 19, No. 11, pp. 624{633, November 1976.

[26] Gray, J. N., Lorie, R. A., Putzulo, G. R., and Traiger, I. L. \Granularity of Locks

and Degrees of Consistency in a Shared Database". In Stonebraker, M., editor,

Readings in Database Systems, pp. 94{121. Morgan Kaufmann Publishers, Inc.,

San Francisco, California, 1988.

[27] Dijkstra, E. W. \Cooperating Sequential Processes". Technical Report EDW{

123, Technological University, Eindhoven, The Netherlands, 1965.

[28] Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., and Schwarz, P. \ARIES:

A Transaction Recovery Method Supporting Fine-Granularity Locking and Par-

tial Rollbacks Using Write-Ahead Logging". ACM Transactions on Database

Systems, Vol. 17, No. 1, pp. 94{162, March 1992.

[29] Rothermel, K. and Pappe, S. \Open Commit Protocols for the Tree of Processes

Model". In Proceedings of the 10th International Conference on Distributed

Computer Systems, pp. 236{244, Paris, France, 1990.

[30] Rothermel, K. and Pappe, S. \Open Commit Protocols Tolerating Commission

Failures". ACM Transactions on Database Systems, Vol. 18, No. 2, pp. 289{332,

June 1993.

[31] Schlighting, R. and Schneider, F. \Fail-Stop Processors: An Approach to De-

signing Fault-Tolerant Computing Systems". ACM Transactions on Computing

Systems, Vol. 1, No. 3, pp. 222{238, September 1983.

[32] LeLann, G. \Error Recovery". In Lampson, B. W., Paul, M., and Siegert, H. J.,

editors, Distributed Systems: Architecture and Implementation - An Advanced

Course, Lecture Notes in Computer Science. Vol. 105, pp. 371{ 376, Springer-

Veralg, Berlin, 1981.

[33] Samaras, G., Britton, K., Citron, A., and Mohan, C. \Two-Phase Commit

Optimizations and Tradeo�s in the Commercial Environment". In Proceedings

of the 9th International Conference on Data Engineering, pp. 520{529, Vienna,

Austria, February 1993.

[34] Samaras, G. and Nikolopoulos, S. \Algorithmic Techniques Incorporating

Heuristic Decisions to Commit Protocols". In Proceedings of the 21st Euromicro

Conference, Como, Italy, September 1995.

168

[35] Stonebraker, M. \Concurrency Control and Consistency of Multiple of Data in

Distributed INGRES". IEEE Transactions on Software Engineering, Vol. SE{5,

No. 3, pp. 188{194, May 1979.

[36] Stamos, J. and Cristian, F. \A Low-Cost Atomic Commit Protocol". In Pro-

ceedings of the 9th Symposium on Reliable Distributed Systems, pp. 66{75, 1990.

[37] DeWitt, D., Ghandeharizadeh, S., Schneider, D., Bricker, A., Hsiao, H., and

Rasmussen, R. \The Gamma Database Machine Project". IEEE Transactions

on Knowledge and Data Engineering, Vol. 2, No. 1, pp. 44{69, 1990.

[38] Hammer, M. and Shipman, D. \Reliability Mechanisms for SDD{1: A System

for Distributed Databases". ACM Transactions on Database Systems, Vol. 8,

No. 4, pp. 431{466, December 1980.

[39] DeWitt, D., Katz, R., Olken, F., Shapiro, L., Stonebraker, M., and Wood, D.

\Implementation Techniques for Main Memory Database Systems". In Proceed-

ings of the ACM SIGMOD International Conference on Management of Data,

pp. 1{8, Boston, Massachusetts, 1984.

[40] Gawlick, D. and Kinkade, D. \Varieties of Concurrency Control in IMS/VS Fast

Path". IEEE Database Engineering, Vol. 8, No. 2, June 1985.

[41] Skeen, D. and Stonebraker, M. \A Formal Model of Crash Recovery in a Dis-

tributed System". IEEE Transactions on Software Engineering, Vol. SE{9, No.

3, pp. 219{228, May 1983.

[42] Cooper, E. \Analysis of Distributed Commit Protocols". In Proceedings of the

ACM SIGMOD International Conference on Management of Data, pp. 175{183,

Orlando, Florida, June 1982.

[43] Breitbart, Y., Garcia-Molina, H., and Silberschatz, A. \Overview of Multi-

database Transaction Management". VLDB Journal, Vol. 1, No. 2, pp. 181{239,

October 1992.

[44] Nodine, M. H. Interactions: Multidatabase Support for Planning Applications.

PhD thesis, Department of Computer Science, Brown University, Providence,

Rhode Island, May 1993.

[45] Mullen, J. G. Atomic Commitment in Multidatabase Systems. PhD thesis,

Department of Computer Science, Purdue University, West Lafayette, Indiana,

December 1993.

[46] Pu, C., Le�, A., and Chen, Shu-Wie F. \Heterogeneous and Autonomous Trans-

action Processing". IEEE Computer, Vol. 24, No. 12, pp. 64{72, December 1991.

[47] Tal, A. and Alonso, R. \Integration of Commit Protocols in Heterogeneous

Databases". In Proceedings of the International Conference on Information and

Knowledge Management, pp. 27{34, Baltimore, Maryland, November 1992.

169

[48] Tal, A. and Alonso, R. \Commit Protocols for Externalized{Commit Heteroge-

neous Databases". Distributed and Parallel Databases, Vol. 2, No. 2, pp. 209{234,

April 1994.

[49] Gligor, V. D. and Lunckenaugh, Gary L. \Interconnecting Heterogeneous

Database Management Systems". IEEE Computer, Vol. 17, No. 1, pp. 33{43,

January 1984.

[50] Mohan, C., Britton, K., Citron, A., and Samaras, G. \Generalized Presumed

Abort: Marrying Presumed Abort and SNA's LU 6.2 Commit Protocols". In

Proceedings of the 5th International Workshop on High Performance Transaction

Systems, Asilomar, California, September 1993.

[51] Samaras, G., Briton, K., Citron, A., and Mohan, C. \Enhancing SNA's LU

6.2 Sync Point to Include Presumed Abort Protocol". Technical Report TR#

29.1751, IBM, IBM Research Triangle Park, August 1993.

[52] Chrysanthis, P. K. and Ramamritham, K. \Autonomy Requirements in Hetero-

geneous Distributed Database Systems". In Proceedings of the Conference on

the Advances on Data Management, pp. 283{302, December 1994.

[53] Muth, P. and Rakow, T. \Atomic Commitment for Integrated Database Sys-

tems". In Proceedings of the 7th International Conference on Data Engineering,

pp. 296{304, Kobe, Japan, April 1991.

[54] Breitbart, Y., Silberschatz, A., and Thompson, G. \Reliable Transaction Man-

agement in a Multidatabase System". In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp. 215{224, Atlantic City,

New Jersey, May 1990.

[55] Breitbart, Y. and Silberschatz, A. \Strong Recoverability in Multidatabase Sys-

tems". In Proceedings of the 2nd International Workshop on Research Issues on

Data Engineering: Transaction and Query Processing, pp. 170{175, Phoenix,

Arizona, February 1992.

[56] Breitbart, Y., Silberschatz, A., and Thompson, G. \Transaction Management

Issues in a Failure-Prone Multidatabase System Environment". VLDB Journal,

Vol. 1, No. 1, pp. 1{39, July 1992.

[57] Mehrotra, S., Rastogi, R., Breitbart, Y., Korth, H., and Silberschatz, A. \En-

suring Transaction Atomicity in Multidatabase Systems". In Proceedings of the

ACM Symposium on Principles of Database Systems, pp. 164{175, June 1992.

[58] Soparkar, N., Korth, H., and Silberschatz, A. \Failure{Resilient Transaction

Management in Multidatabases". IEEE Computer, Vol. 24, No. 12, pp. 28{36,

December 1991.

170

[59] Wolski, A. and Veijalainen, J. \2PC Agent Method: Acheiving Serializability in

Presense of Failures in a Heterogeneous Multidatabase". In Proceedings of the

IEEE PARBASE, pp. 321{330, Miami Beach, Florida, March 1990.

[60] Wolski, A. and Veijalainen, J. \2PC Agent Method: Acheiving Serializability in

Presense of Failures in a Heterogeneous Multidatabase". In Rishe, N., Navathe,

S., and Tal, D., editors, Databases: Theory, Design, and Applications. pp. 268{

287, IEEE Computer Society Press, Los Alamitos, California, 1991.

[61] Georgakopoulos, D. Transaction Management in Multidatabase Systems. PhD

thesis, Department of Computer Science, University of Houston, Houston, Texas,

December 1990.

[62] Georgakopoulos, D. \Multidatabase Recoverability and Recovery". In Pro-

ceedings of the 1st International Workshop on Interoperability in Multidatabase

Systems, pp. 348{355, Kobe, Japan, April 1991.

[63] Barker, K. and Ozsu, M. T. \Reliable Transaction Execution in Multidatabase

Systems". In Proceedings of the 1st International Workshop on Interoperability

in Multidatabase Systems, pp. 344{347, Kobe, Japan, April 1991.

[64] Mullen, J. G., Jing, J., and Sharif-Askary, J. \Reservation Commitment and its

use in Multidatabase Systems". In Proceedings of the 4th IEEE International

Conference on Database and Expert Systems Applications (DEXA), pp. 116{121,

Prague, Czech Republic, September 1993.

[65] Mehrotra, S., Rastogi, R., Korth, H., and Silberschatz, A. \A Transaction Model

for Multidatabase System". In Proceedings of the International Conference on

Distributed Computing Systems, pp. 56{63, June 1992.

[66] Al-Houmaily, Y. J. and Chrysanthis, P. K. \Two{Phase Commit in Gigabit-

Networked Distributed Databases". In Proceedings of the 8th ISCA Interna-

tional Conference on Parallel and Distributed Computing Systems, pp. 554{560,

Orlando, Florida, September 1995.

[67] Al-Houmaily, Y. J. and Chrysanthis, P. K. \An Atomic Commit Protocol for

Gigabit-Networked Distributed Databases". Journal of Systems Architecture,

The EUROMICRO Journal, (To Appear) 1997.

[68] Kleinrock, L. \The Latency/Bandwidth Tradeo� in Gigabit Networks". IEEE

Communications Magazine, Vol. 30, No. 4, pp. 36{40, 1992.

[69] Banerjee, S., Li, V., and Wang, C. \Distributed Database Systems in High-Speed

Wide-Area Networks". IEEE Journal on Selected Areas in Communications, Vol.

11, No. 4, pp. 617{630, May 1993.

[70] Banerjee, S. and Chrysanthis, P. K. \Data Sharing and Recovery in Gigabit-

Networked Databases". In Proceedings of the 4th International Conference on

Computer Communications and Networks, September 1995.

171

[71] Al-Houmaily, Y. J. and Chrysanthis, P. K. \The Implicit Yes-Vote Commit

Protocol with Delegation of Commitment". In Proceedings of the 9th ISCA

International Conference on Parallel and Distributed Computing Systems, pp.

804{810, Dijon, France, September 1996.

[72] Al-Houmaily, Y. J., Conticello, R., and Chrysanthis, P. K. \Performance of

Atomic Commit Protocols in Gigabit-Networked Database Systems". Technical

Report TR-97-15, Department of Computer Science, University of Pittsburgh,

Pittsburgh, Pennsylvania, March 1997.

[73] Agrawal, R., Carey, M., and Livny, M. \Concurrency Control Performance Mod-

eling: Alternatives and Implications". ACM Transactions on Database Systems,

Vol. 12, No. 4, pp. 609{654, December 1987.

[74] Carey, M. and Livny, M. \Distributed Concurrency Control Performance: A

Study of Algoritms, Distribution, and Replication". In Proceedings of the 14

International Conference on Very Large Data Bases, pp. 13{25, Los Angeles,

California, August 1988.

[75] Carey, M. and Livny, M. \Parallelism and Concurrency Control in Distributed

Database Machines". In Proceedings of the ACM SIGMOD International Con-

ference on the Management of Data, pp. 122{133, Portland, Oregon, June 1989.

[76] Al-Houmaily, Y. J., Chrysanthis, P. K., and Levitan, S. P. \An Argument in

Favor of the Presumed Commit Protocol". In Proceedings of the 13th IEEE

International Conference on Data Engineering, pp. 255{265, Birmingham, U.

K., April 1997.

[77] Al-Houmaily, Y. J., Chrysanthis, P. K., and Levitan, S. P. \Enhancing the

Performance of Presumed Commit Protocol". In Proceedings of the 12th ACM

Annual Symposium on Applied Computing, Special Track on Database Technol-

ogy, pp. 131{133, San Jose, California, March 1997.

[78] Al-Houmaily, Y. J. and Chrysanthis, P. K. \Dealing with Incompatible Pre-

sumptions of Commit Protocols in Multidatabase Systems". In Proceedings

of the 11th ACM Annual Symposium on Applied Computing, Special Track on

Database Technology, pp. 186{195, Philadelphia, Pennsylvania, February 1996.

[79] Chrysanthis, P. K. ACTA, A Framework for Modeling and Reasoning about

Extended Transactions. PhD thesis, Department of Computer and Information

Science, University of Massachusetts, Amherst, Massachusetts, September 1991.

[80] Chrysanthis, P. K. and Ramamritham, K. \A Formalism for Extended Trans-

action Models". In Proceedings of the 17th International Conference on Very

Large Databases, pp. 103{112, Barcelona, Spain, September 1991.

172

[81] Chrysanthis, P. K. and Ramamritham, K. \Synthesis of Extended Transaction

Models Using ACTA". ACM Transactions on Database Systems, Vol. 19, No. 3,

pp. 450{491, September 1994.

[82] Gupta, R., Haritsa, J., Ramamritham, K., and Seshadri, S. \Commit Processing

in Distributed Real-Time Database Systems". In Proceedings of the 17th Real-

Time Systems Symposium, pp. 220{229, Washington, D.C., December 1996.

[83] Al-Houmaily, Y. J. and Chrysanthis, P. K. \In Search for an E�cient Real-

Time Atomic Commit Protocol". In Proceeding of the 17th Real-Time Systems

Symposium on Work in Progress, pp. 51{54, Washington, D.C., December 1996.

