
Incompatibility Dimensions and Integration of Atomic

Commit Protocols

Yousef J. Al-Houmaily

Department of Computer and Information Programs

Institute of Public Administration, Riyadh 11141, Saudi Arabia

email: {houmaily@ipa.edu.sa}

Abstract: Advanced software application systems contain transactions that tend to traverse incompatible database sites

belonging to different human organizations. One key requirement of these application systems is universal transactional

support and, in particular, guaranteeing the atomicity property of transactions in the presence of incompatible atomic commit

protocols (ACPs). Detailed analysis show that incompatibilities among ACPs could be due to the semantics of coordination

messages or the presumptions about the outcome of terminated transactions. This leads to the definition of “operational

correctness”, a criterion that captures the practical integration of incompatible ACPs. It also leads to the definition of “safe

state”, a notion that determines the conditions under which all information pertaining to distributed transactions can be

discarded without sacrificing their consistent termination across all participating sites. The significance of the analytical

results is demonstrated through the development of a new ACP called “integrated two-phase commit” that integrates the most

commonly known ACPs, with respect to applicability and performance, in a practical manner and in spite of their

incompatibilities.

Keywords: Two-Phase Commit, Voting Protocols, Distributed Transaction Processing, Integrated Database Systems, Internet

Transactions, Electronic Services and Electronic Commerce.

1. Introduction

With the recent advances of Intranet and Internet

technologies, there is a greater need than ever before to

inter-operate different database sites in a practical and

efficient manner. Such inter-operation is absolutely

necessary towards supporting the interoperability

characteristic of advanced database applications such

as electronic services and electronic commerce, multi-

organizational workflows and web-based transactions

(to name just a few). A key requirement of these

applications is the ability to support universal

transactional access and, in particular, the atomicity

property of transactions.

An atomic commit protocol (ACP) is the only mean

to ensure the traditional atomicity property of

transactions in any distributed database system. This is

to guarantee, in spite of possible site and

communication failures, that all sites participating in a

transaction’s execution reach the same final outcome

for the transaction, i.e., to either commit or abort the

transaction. Since commit processing consumes a

substantial amount of a transaction’s execution time

[10] and ACPs are known to be blocking in case of

failures [18], a variety of ACPs and optimizations have

been proposed in the literature. Although the search

for efficient ACPs has received much attention in the

past decade and continue to be an important research

topic for many environments including main memory

databases (e.g., [15]), mobile database systems (e.g.,

[17]) and real-time databases (e.g., [12]), besides

traditional (homogenous) distributed databases (e.g.,

[1, 21]); the issue of compatibility among ACPs did

not receive as much attention in spite of its importance

in advanced applications.

 For the above reason, it is imperative to focus on

the compatibility of ACPs in distributed database

environments where the different database sites do not

unanimously adopt the same ACP, such as

multidatabase systems and the Internet. Section 2

presents the choice of protocols that are used to

demonstrate the incompatibly issues while Section 3

shows that incompatibilities among ACPs could be due

to (1) the semantics of the coordination messages

(which include both their meanings as well as their

existence), or (2) the presumptions about the outcome

of terminated transactions in case of failures. Thus, in

contrast to what was previously believed [7, 19],

supporting a visible prepared-to-commit state is not

sufficient for a practical integration of ACPs. This is

because the outcome of some terminated transactions

might have to be remembered forever, curtailing the

system's operation on the long run. This leads to the

definition of operational correctness, a criterion that

captures, unlike functional correctness, the practical

integration of incompatible ACPs. It also leads to the

definition of safe state, a notion that determines the

conditions under which all information pertaining to

distributed transactions can be discarded without

sacrificing their consistent termination across all

participating sites.

The notion of safe state is expressed using ACTA

[8], a first order predicate logic formalism. Although

Preprint

Incompatibility Dimensions and Integration of Atomic Commit Protocols, Yousef J. Al-Houmaily,
International Arab Journal of Information Technology, Vol. 5, No. 4, pp. 381-392, October 2008.

all ACPs can be specified and all theorems can be

proven using ACTA by modeling log operations and

system crashes as transactions’ significant events
1
, we

choose to structure the proofs of the theorems along

the lines of the proofs of ACPs in [5] for the sake of

simplicity and ease of exposition. In all the proofs, we

assume that (1) each site is sane and (2) each site can

cause only omission failures. That is, each site is

assumed to be fail stop where it never deviates from

the specification of the protocol that it is using and,

when it fails, it will, eventually, recover.

The significance of the analytical results is

demonstrated through the development of a new ACP

called integrated two-phase commit (I-2PC) which is

presented in Section 4. I-2PC integrates the most

commonly known APCs, with respect to performance

and applicability, according to the operational

correctness criterion. Section 4 also provides a prove

of correctness to the new protocol. Section 5

summarizes the contributions of this paper with some

concluding remarks.

2. Choice of ACPs

A distributed/Internet transaction accesses data

located at different database sites. When the

transaction finishes its execution and submits a

“Commit” request, the transaction manager at the site

where the transaction was initiated acts as the

coordinator for the termination of the transaction

across all participating sites. This is achieved by

initiating an ACP such as the basic two-phase commit

(2PC) protocol [11, 13], which is also called presumed

nothing (PrN) [14]. In this paper, it is assumed that

each database site implements an ACP that is not

necessarily the same as the ACPs adopted by the other

sites. Furthermore, it is assumed that the ACP adopted

by a site can be either PrN, presumed abort (PrA) [16],

presumed commit (PrC) [16] or implicit yes-vote

(IYV)
2
 [3]. The choice of these four protocols is

because they are the best to demonstrate the

dimensions of incompatibilities among ACPs that

seem, at first glance, to be straight forward to

interoperate and also because of the importance of

these protocols which is as follows:

• PrN for historical reason since it is the first known

and published ACP.

• PrA because it is currently part of the database

standards [6, 20].

• PrC because of its performance advantage for

committing transactions and the argument that favors

1
 The basic two-phase commit protocol was specified and its

important functional correctness aspects was shown using
ACTA in [9].
2
 Autonomy implications on the constituent database sites

are not discussed in this paper as it has been shown to be
violated in one form or another in [9].

it to become also part of the database protocol

standards [4].

• IYV because of its performance advantages in high-

speed networks that characterize today's computing

environments.

3. Incompatibility Dimensions of ACPs

This section examines the compatibility of PrN,

PrA, PrC and IYV by assuming that they can co-exist

in a system and can be used together to commit a

distributed/Internet transaction. As it shows, the

incompatibilities of ACPs could be due to the

semantics of their coordination messages or the

presumptions that they make about the outcome of

terminated transactions. The analysis of both of these

dimensions is presented in the next two sections.

3.1. Message Semantics Incompatibilities

The incompatibilities that are due to the semantics

of messages arise in two forms. The first one is due to

the meaning of messages whereas, the second one, is

due to the existence of messages. The differences

between the two forms of incompatibilities are

presented through two example protocols.

3.1.1. Meaning Incompatibilities

Assume that a coordinator follows its own protocol

and does not realize any message out of its protocol.

That is, it simply ignores any message that violates its

protocol and interprets any message that it recognizes

according to its own protocol. We call this type of

integrated protocol used by a coordinator as strict

atomic commit (SAC) protocol. In the examples

below, a site follows SAC when acting as a

coordinator and its original ACP when acting as a

participant.

Consider the case where a transaction has executed

at two participants. Furthermore, assume that the

coordinator and one of the participants employ PrA

while the other participant employs IYV. Following

IYV, when the participant executes an update

operation, it acknowledges the operation with a

message that contains the redo log records that were

generated during the execution of the operation and

enters an implicit prepared-to-commit state. The

coordinator, following SAC, will recognize and

interpret the message as only an acknowledgment for

the successful execution of the operation without

extracting the redo records contained in the message

since this is not part of its protocol. At commit time of

the transaction, the coordinator initiates the voting

phase that will be recognized by the PrA participant

but not the IYV participant. Based on that, the IYV

participant will never send an explicit vote back to the

coordinator since it employs a one-phase commit

(1PC) protocol. In this scenario, the coordinator will

timeout awaiting for the vote of the IYV participant

and will abort the transaction. Thus, using SAC, no

transaction that executes at an IYV participant will

ever commit. Similar scenarios occur if the coordinator

is using PrN or PrC and there is at least one IYV

participant.

Now, assume that, instead of using a 2PC variant,

the coordinator and one of the participants are using

IYV while the other participant is using PrA.

Furthermore, assume that the transaction has finished

its execution and submitted its final commit primitive.

Following IYV, the coordinator will commit the

transaction since all the operations pertaining to the

transaction have been executed at both participants and

acknowledged. In this case, it force writes a commit

record and sends commit messages to both

participants. The IYV participant will recognize the

message and commits the transaction whereas, the PrA

participant will not recognize the commit message

since it is out of its protocol and will ignore it. In this

case, the coordinator will keep sending the final

commit message to the PrA participant, according to

IYV, forever, without getting an acknowledgment. On

the other hand, the participant will keep ignoring these

messages awaiting a prepare to commit message from

the coordinator. Eventually, the PrA participant will

timeout and abort the transaction, according to PrA.

Thus, in this scenario, the atomicity of the transaction

has been violated because it ended up committing at

one site and aborting at the other. Similar scenarios

occur if any participant in a transaction’s execution

uses PrN or PrC.

We reached the above two scenarios because the

coordinator misinterpreted the meaning of the

operations’ acknowledgment messages. In the first

scenario, the coordinator interpreted the meaning of an

operation’s acknowledgment received from the 1PC

participant to only mean that the operation has been

executed successfully without interpreting it to also

mean that the participant has entered an implicit

prepared-to-commit state. In the second scenario, the

opposite happened. That is, the coordinator

misinterpreted the meaning of an operation’s

acknowledgment received from the 2PC participant to

mean that the participant has entered an implicit

prepared-to-commit state while the participant is still

in an active state. The above two scenarios can be

generalized with the following theorem.

Theorem 1: It is impossible to achieve global

atomicity if the coordinator is using SAC in the

presence of transactions that execute at both 1PC and

2PC participants.

Proof: The proof proceeds by example and consists of

two parts. The first is when the coordinator is using a

2PC variant while the second is when the coordinator

is using 1PC.

Part I: Assume that the coordinator is using a 2PC

variant and a transaction has executed at a 1PC

participant. Furthermore, assume that all the

transaction’s operations have been executed

successfully across all participants and acknowledged,

and the coordinator decided to commit the transaction.

In this case, the 1PC participant will not recognize the

prepare to commit message of the voting phase and,

consequently, will never send back an explicit vote in

response to the prepare to commit message of the

coordinator. Eventually, the coordinator will timeout

and abort the transaction. Thus, no transaction will

ever commit when the coordinator is using 2PC in the

presence of 1PC participants.

Part II: Assume that the coordinator is using 1PC and

a transaction has executed at a 2PC participant.

Furthermore, assume that all the transaction’s

operations have been executed successfully across all

participants and acknowledged, and the coordinator

decided to commit the transaction. In this case, the

2PC participant will not recognize the commit

message of the coordinator since it precedes the voting

phase of the participant’s protocol. Eventually, the

participant will timeout awaiting the prepare to commit

message and will abort the transaction. Thus, the

atomicity of the transaction is violated since it ended

up committing by its coordinator (and 1PC participants

if any) and aborting at the 2PC participant. □

3.1.2. Existence Incompatibilities
This section demonstrates the incompatibilities that

are due to the existence (i.e., absence vs. presence) of

messages rather than their meaning. Assume that a

coordinator follows its own protocol, “knows” and

“understands” what messages to send and what

messages to expect from each participant.

Furthermore, assume that the coordinator handles any

violations of its protocol with respect to extra or

missing messages by simply ignoring such messages.

We call this protocol used by a coordinator

participants’ integrated protocol (PIP). In the

examples below, a site will follow PIP when acting as

a coordinator and its original ACP when acting as a

participant.

Consider the case where a transaction has executed

at two participants. Furthermore, assume that the

coordinator and one of the participants are using PrC

while the other participant is using IYV. Assuming

that the coordinator knows the used protocol by each

of the two participants and understands the meaning of

their coordination messages, it will extract any redo

log records contained in an acknowledgment form the

IYV participant and record them in its log. The

coordinator will also interpret the message to mean

that the participant is in an implicit prepared-to-

commit state. At the end of the transaction, in

accordance to PrC, the coordinator will force write an

initiation record and sends a prepare to commit

message to only the PrC participant. This is because

such a message is not within the IYV protocol. When

the coordinator receives the vote of the PrC

participant, the coordinator makes the final decision.

Assuming a commit final decision, the coordinator will

force write a commit final decision and then sends

commit messages to both participants. However, the

IYV participant will acknowledge the commit

decision. By knowing that this participant will send an

acknowledgment, the coordinator will not consider this

message since this message is a violation of its

protocol. With respect to the logging activities at the

coordinator, the coordinator will be able to forget

about the transaction and discard all information

pertaining to the transaction from its protocol table

once it has written the commit final decision onto its

stable log. The coordinator will be also able to garbage

collect the transaction’s log records when necessary.

Since the coordinator employs PrC, it will respond to

the inquiries of the participants in case of a failure with

a commit final decision, using the PrC presumption.

Now, let us consider another transaction that has

finished its execution at the same two participants and

the coordinator has decided to abort the transaction. In

this case, the IYV participant will never acknowledge

the abort decision. This means that the coordinator,

which expects acknowledgment messages from all

participants, can never garbage collect the records

pertaining to the transaction from its stable log nor it

can discard the information from its protocol table that

is kept in main memory. To alleviate this situation,

knowing that the IYV participant will never

acknowledge an abort decision, in PIP, the coordinator

forgets the outcome of the transaction once it has

received the acknowledgment of the PrC participant. In

this case, the atomicity of the transaction might be

violated. For example, if a failure occurs before the

IYV participant has received the abort decision, the

participant is left blocked and will inquire about the

outcome of the transaction as part of its recovery

procedure. If the coordinator has already received the

acknowledgment from the PrC participant, before the

failure, and forgotten about the transaction, it will

wrongly respond with a commit final decision (using

the PrC presumption) which clearly violates the

atomicity of the transaction.

Similar situations occur if the coordinator employs

PrN, PrA or IYV and some participants employ PrC

while the others employ PrN, PrA or IYV. In these

situations, the atomicity of committed transactions

might be violated.

The above scenarios can be generalized with the

following theorem.

Theorem 2: It is impossible to achieve global

atomicity if the coordinator is using PIP in the

presence of transactions that execute at participants

that acknowledge only abort decisions and participants

that acknowledge only commit decisions.

Proof: The proof proceeds by example and consists of

four parts. The first is when the coordinator is using

PrN. The second is when the coordinator is using PrA.

The third is when the coordinator is using PrC. The

fourth is when the coordinator is using IYV.

Part I: Assume that the coordinator is using PrN and a

transaction has executed at two participants one of

which is using PrA whereas the other is using PrC.

Furthermore, assume that coordinator decides to

commit the transaction. In this case, the PrA

participant will acknowledge the commit decision but

the PrC participant will not. Now, it is possible for the

PrC participant to fail before receiving the commit

decision and for the inquiring message of the PrC

participant to arrive after the coordinator has received

the acknowledgment of the PrA participant and

forgotten the transaction. In this case, the coordinator

will respond with an abort decision (using the PrN

presumption) which violates the atomicity of the

transaction.

Part II: Assume that a transaction has executed at two

participants as above but the coordinator is using PrA

instead of PrN. Assume that the coordinator decides to

commit the transaction. In this case, the PrA

participant will acknowledge the decision but the PrC

participant will not, as above. Now, it is possible for

the PrC participant to fail before receiving the commit

decision and for the inquiring message to arrive after

the coordinator has received the acknowledgment of

the PrA participant and forgotten the transaction. In

this case, the coordinator will respond with an abort

decision (using the PrA presumption) which violates

the atomicity of the transaction.

Part III: We have proven this part in our motivating

example at the beginning of this section.

Part IV: Assume that a transaction has executed at

two participants one of which is using IYV whereas

the other one is using PrC. Assume that the

coordinator is using IYV. Furthermore, assume that the

transaction has finished it execution at both

participants successfully and the coordinator has

received a “Yes” vote from the PrC participant. If the

coordinator makes a commit final decision, the IYV

participant will acknowledge the decision but the PrC

participant will not. Now, it is possible for the PrC

participant to fail before receiving the commit decision

and for the inquiring message to arrive after the

coordinator has received the acknowledgment of the

IYV participant and forgotten the transaction. In this

case, the coordinator will respond with an abort

decision (using the IYV presumption) which violates

the atomicity of the transaction. □

3.2. Presumptions’ Incompatibilities

Clearly, the PIP solution in which a coordinator

“knows” and “understands” (i.e., “talks”) the language

of the protocols implemented by the different

participants does not work. The PIP protocol might

violate transaction atomicity because the coordinator

forgets about transactions prematurely due to missing

messages from some participants. Let us consider an

alternative integrated protocol, called coordinator

integrated protocol (CIP) which behaves similar to

PIP. However, unlike PIP, a coordinator in CIP never

forgets a transaction until it has received all necessary

messages.

As we have discussed above, some participants will

never acknowledge either commit or abort decisions.

This means that the coordinator will never be able to

discard information pertaining to some terminated

transactions from both its protocol table and stable log.

Since these terminated transactions when they are

forgotten might lead to a wrong presumption (as seen

in PIP), CIP does not lead to atomicity violations by

requiring a coordinator to always remember the

outcome of these transactions and never uses its

presumption after a failure. Thus, even though CIP

guarantees functional correctness in which it ensures

the atomicity of all distributed transactions, it fails to

guarantee operational correctness which requires that

the coordinator should be able to eventually forget

about the outcome of terminated transactions, as the

following definition states [2]:

Definition 1: The integration of different ACPs is

operationally correct if and only if:

1. The coordinator and all the participants reach

consistent decisions regarding the outcome of

transactions and regardless of failures.

2. The coordinator can, eventually, discard all the

information pertaining to terminated transactions

from its protocol table and garbage collect its log.

3. All participants can, eventually, forget about

transactions and garbage collect their logs.

Since CIP has to remember the outcome of some

transactions forever, we generalize this result with the

following theorem.

Theorem 3: It is impossible to achieve operational

correctness if the coordinator is using CIP in the

presence of transactions that execute at participants

that adopt ACPs with contradicting presumptions

about terminated transactions.

Proof: The proof proceeds by example and consists of

four parts. The first is when the coordinator is using

PrN. The second is when the coordinator is using PrA.

The third is when the coordinator is using PrC. The

fourth is when the coordinator is using IYV.

Part I: Assume that the coordinator is using PrN and

that a transaction has executed at two participants one

of which is using PrA whereas the other is using PrC.

Furthermore, assume that coordinator decides to

commit the transaction. In this case, the PrA

participant will acknowledge the commit decision but

the PrC participant will not. Hence, the coordinator

will not be able to write an end log record and has to

remember the transaction forever.

Part II: Assume that a transaction has executed at two

participants as above but the coordinator is using PrA

instead of PrN. Assume that the coordinator decides to

commit the transaction. In this case, the PrA

participant will acknowledge the decision but the PrC

participant will not, as above. Hence, the coordinator

will not be able to write an end log record and has to

remember the transaction forever.

Part III: Assume that a transaction has executed at

two participants as above but the coordinator is using

PrC. Assume that the coordinator decides to abort the

transaction. In this case, the PrC participant will

acknowledge the decision but the PrA participant will

not. Hence, the coordinator will not be able to write an

end log record and has to remember the transaction

forever.

Part IV: Assume that a transaction has executed at

two participants one of which is using IYV whereas

the other one is using PrC. Assume that the

coordinator is using IYV. Furthermore, assume that the

transaction has finished it execution at both

participants successfully and the coordinator has

received a “Yes” vote from the PrC participant. If the

coordinator makes a commit final decision, the IYV

participant will acknowledge the decision but the PrC

participant will not. Hence, the coordinator will not be

able to write an end log record and has to remember

the transaction forever. □

To maintain operational correctness in an ACP, a

coordinator should be able to, eventually, forget the

outcome of transactions without violating the

consistency of its decisions. This is called a safe state

[2]. Intuitively, a coordinator is in a safe state with

respect to a transaction if (1) it forgets a transaction

after all participants have acknowledged its decision

(as in PrN) or (2) it can use a single presumption that

is consistent with the transaction’s final outcome (as in

PrA, PrC and IYV).
Thus, in order to integrate protocols that adopt

contradicting presumptions in a practical manner, we
need a safety criterion that determines the conditions
under which a coordinator can reach a safe state in
which only a single presumption that is consistent
with a transaction’s final outcome holds. The
following safety criterion satisfies this requirement. It
is expressed using ACTA [8], a first order predicate
logic with a precedence relation (→) in the execution
history (H). H represents the complete history of the
execution of a transaction until it is either committed
or aborted across all participating sites. In the
definition below, C denotes the coordinator of the
transaction. The predicate α → β is true if event α
precedes event β in H. It is false, otherwise. Here,
DecideC(AbortT) denotes that the coordinator decides

to abort a transaction T and DecideC(CommitT)
denotes that the coordinator decides to commit T.
DeletePTC(T) denotes that the information pertaining
to T is deleted from the protocol table of the
coordinator. INQti

 denotes an inquiry message from a
participant regarding a subtransaction ti that it has
executed at its site on behalf of T.
RespondC(Outcometi

) denotes the reply of the
coordinator to the inquiry message.

Definition 2: (The definition of safe state)

The above definition states that a coordinator is in

a safe state with respect to a transaction T if T has been

aborted and only the presumed abort presumption

holds (the first clause of the safe state implication), or

T has been committed and only the presumed commit

presumption holds (the second clause). Thus, the

safety criterion implies that some information

including the outcome of transactions has to be

remembered as long as more than one presumption is

possible.

 4. The Integrated Two-Phase Commit

This section presents I-2PC that integrates PrN,

PrA, PrC and IYV according to the operational

correctness criterion that is defined above. The basic

philosophy behind the design of I-2PC is to resolve the

incompatibilities that are due to the semantics of

messages as in CIP and, at the same time, to allow a

coordinator to reach a safe state with respect to the

outcome of terminated transactions without having to

remember them forever.

According to the behavior of PrN, PrA, PrC and

IYV, a coordinator expects those participants that

employ PrN, PrA and IYV to acknowledge commit

final decisions but not those participants that employ

PrC. Similarly, a coordinator expects those participants

that employ PrN and PrC to acknowledge abort final

decisions but not those participants that employ PrA

and IYV. Based on the behavior of the four protocols,

a coordinator, in I-2PC, forgets a committed

transaction when PrN, PrA and IYV participants

acknowledge the commit decision. For an abort

decision, a coordinator forgets an aborted transaction

when PrC participants acknowledge the abort

decision
3
. Thus, I-2PC behaves similar to PIP with

3
 Although PrN treats transactions uniformly during normal

processing regardless of whether they are to be finally
committed or aborted, there is a hidden presumption in PrN
by which it considers all active transactions as aborted in
case of a failure. For this reason, there is no need for an
abort acknowledgment from a PrN participant in I-2PC.

respect to the timing at which it forgets about the

outcome of terminated transactions.

However, unlike PIP, a coordinator in I-2PC,

instead of using a single presumption for all terminated

transactions, which is the case in all presumption-

based ACPs, the presumption used by the coordinator

(in the absence of information) depends on the

protocol used by the inquiring participant. That is, if

the inquiring participant is abort-based, the

presumption of the coordinator is abort. On the other

hand, if the inquiring participant is commit-based, the

presumption is commit. In this way, the presumption

of the coordinator always matches the actual final

outcome of a forgotten terminated transaction.

The next section presents the details of I-2PC

during normal processing. Then, Section 4.2 discusses

the recovery aspects of I-2PC in case of failures and

prove its correctness.

4.1. I-2PC During Normal Processing

In I-2PC, a coordinator records the 2PC protocol

employed by each participant in a table called

participants’ commit protocol (PCP). The PCP table is

kept onto stable storage and is updated when a new

site joins or leaves the distributed environment. Only a

portion of the PCP table, called active participants’

protocols (APP), is maintained in main memory,

containing the identities of the participants with active

transactions.

Once the coordinator of a transaction has identified

a participating site for the execution of the transaction,

it checks its protocol table. If the identity of the

participant is not in the protocol table, the coordinator

adds the identity of the participant into the table. Then,

it forwards the operation to the participant for

execution.

If the coordinator receives either an abort request

from a transaction or a negative acknowledgment from

any participant, it aborts the transaction. In this case,

the coordinator discards all information pertaining to

the transaction from its protocol table without writing

a decision log record for the transaction. Then, the

coordinator sends an abort message to each participant

that has acknowledged the processing of all the

transaction's operations successfully.

 On the other hand, when the coordinator of a

transaction receives a commit primitive from the

transaction, it waits for the acknowledgments of the

transaction’s pending operations and then checks its

APP to determine which protocol to use for the

termination of the transaction. The coordinator selects

PrN if all the participants are using PrN. Similarly, it

selects PrA if all the participants are using PrA

whereas, it selects PrC if all the participants are using

PrC. If all participants are using IYV, the coordinator

selects IYV.

SafeStateC(T) ⇒

 ((DecideC(AbortT) ∈ H ∧

∀ti ∈ T (DeletePTC(T)) → INQti
) ⇒ RespondC(Abortti

) ∈ H) ∨

 ((DecideC(CommitT) ∈ H ∧

∀ti ∈ T (DeletePTC(T)) → INQti
) ⇒ RespondC(Committi

) ∈ H)

In the event of protocols’ mix, the coordinator

selects I-2PC. By using I-2PC, there are two cases to

consider. The first one is when the protocols used by

the participants have the same presumptions about the

outcome of terminated transactions. This case occurs

when the participants are mixed PrN, PrA and IYV.

These three protocols adopt the abort presumption of

terminated transactions. The second case is when the

used protocols’ mix has contradicting presumptions

about the outcome of terminated transactions. This

case occurs when the participants’ mix contains a PrC

participant.

4.1.1. Absence of Contradicting Presumptions

When the used protocols by the participants have

the same presumption about the outcome of terminated

transactions, the coordinator sends a prepare to commit

message to each 2PC participant (i.e., each PrN and

PrA participant), as shown in Figure 1. When a 2PC

participant receives a prepare to commit message, it

validates the transaction and then sends back its vote.

If the transaction can be committed, the participant

force writes a prepared log record and then sends back

its “Yes” vote, following either PrN or PrA used by the

participant. Otherwise, the participant aborts the

transaction and sends back a “No” vote without

writing any log records.

When the coordinator receives the votes of 2PC

participants, the coordinator makes the final decision.

The decision is commit if each IYV participant is in an

implicit prepared-to-commit state and each 2PC

participant is in an explicit prepared-to-commit state.

Otherwise, the decision is abort.

On a commit decision (Figure 1 (a)), the

coordinator force writes a commit log record, that

includes the identities of all participating sites, and

sends out commit messages. When a 2PC participant

receives a commit message, it commits the transaction,

force writes a commit log record and then,

acknowledges the commit decision. When a 1PC

participant receives a commit message, it commits the

transaction, writes a non-forced commit log record

and, when the commit record is flushed onto the stable

log, it sends back an acknowledgment. Once the

coordinator has received acknowledgments from all

participating sites, it writes a non-forced end log

record and forgets the transaction.

On an abort decision (Figure 1 (b)), assuming that

some 2PC participant (l) has voted “No”, the

coordinator sends out abort messages to IYV

participants and each 2PC participant that has voted

“Yes” and forgets the transaction without writing any

log records. When an IYV or PrA participant receives

an abort message, it complies with the decision and

writes a non-forced abort log record. On the other

hand, when a PrN participant receives an abort

message, following PrN, it complies with the decision,

force writes an abort log record and sends back an

acknowledgment. When the coordinator receives an

acknowledgment from a PrN, it simply ignores the

message, knowing that it has no effect on the protocol

correctness (as we show in Section 4.2).

4.1.2. Presence of Contradicting Presumptions

When the used protocols by the participants have

contradicting presumptions about the outcome of

terminated transactions (i.e., there is at least one PrC

participant), the coordinator force writes an initiation

log record, that includes the identities of all

participants, and then, sends a prepare to commit

message to each 2PC participant (i.e., each PrN, PrA

and PrC participant), as shown in Figure 2. When a

2PC participant receives a prepare to commit message,

it validates the transaction and then sends back its

vote. If the transaction can be committed, the

participant force writes a prepared log record and then

sends back its “Yes” vote, following either PrN, PrA

or PrC used by the participant. Otherwise, the

participant aborts the transaction and sends back a

“No” vote without writing any log records.

 When the coordinator receives the votes of 2PC

participants, the coordinator makes the final decision.

(a) Commit Case.

(b) Abort Case.

Commit
Requested
Transaction

Commit log record
Committing

CommittedCommitted

Commit log record
Committing

CommitCommit Commit log record

Write non−forced
End log record

[IYV]
i j

[PrN or PrA]

Active

Op(n)

Prepared

Active

Prepared

Prepared log
Force Write

Write non−forced

Yes

ACK

Write non−forced

ACK Op(n)redo log record(s)

record

Force Write

Prepare

ACK

Force Write

COORDINATORSTATE PARTICIPANT PARTICIPANT STATE

Active

Commit
Requested
Transaction

AbortAbort

Aborting

Aborted

Aborting

Aborted

Abort log record Abort log record

Participant
Voted No l

* This record is forced written in the case of a PrN participant.

An ACK message is sent back by a PrN participant which is ignored by the coordinator.

ACK

[IYV]
i

[PrN or PrA]
j

Active

Op(n)

Prepared

Active

Prepared

Prepared log
Force Write

Write non−forced

Yes

Write non−forced

ACK Op(n)redo log record(s)

record

Prepare

* Write non−forced

COORDINATORSTATE PARTICIPANT STATE

Active

PARTICIPANT

Figure 1: I-2PC in the absence of contradicting presumptions.

The decision is commit if each IYV participant is in an

implicit prepared-to-commit state and each 2PC

participant is in an explicit prepared-to-commit state.

Otherwise, the decision is abort.

On a commit decision (Figure 2), the coordinator

force writes a commit log record and then sends out

commit messages. When a PrN or PrA participant

receives a commit message, it commits the transaction,

force writes a commit log record and then, sends back

an acknowledgment. When a PrC participant receives

the commit decision, it commits the transaction, writes

a non-forced commit log record without sending an

acknowledgment back to the coordinator (following

PrC protocol). When an IYV participant receives a

commit message, it commits the transaction, writes a

non-forced commit log record and, when the commit

record is flushed onto the stable log, it sends back an

acknowledgment. Once the coordinator receives

“commit” acknowledgments from all sites employing

abort-based presumption protocols, the coordinator

writes a non-forced end log record and forgets the

transaction.

On an abort decision (Figure 3), once again

assuming that some 2PC participant (l) has voted “No”

during the voting phase, the coordinator sends out an

abort message to each prepared-to-commit participant

(whether implicitly or explicitly) without writing an

abort log record. When an IYV or PrA participant

receives an abort message (Figure 3 (b)), it complies

with the decision and writes a non-forced abort log

record. On the other hand, when a PrN participant

receives an abort message (Figure 3 (a)), following

PrN, it complies with the decision, force writes an

abort log record and sends back an acknowledgment.

When a PrC participant receives the abort decision, it

aborts the transaction, force writes an abort log record

and then, sends back an acknowledgment.

When the coordinator receives an acknowledgment

from a PrN, it simply ignores the message, knowing

that it has no effect on the protocol correctness (as we

show in the next section). On the other hand, when the

coordinator receives “abort” acknowledgments from

all PrC participants, it writes a non-forced end log

record and forgets the transaction.

4.2. Recovery and Correctness of I-2PC

As in all other commit protocols, communication

and site failures are detected by timeouts. The recovery

procedure in case of communication and participants’

failures are handled in a manner similar to the way

they are handled in PrN, PrA, PrC and IYV protocols.

According to the behavior of PrN, PrA, PrC and IYV,

the coordinator expects those participants that employ

PrN, PrA and IYV to acknowledge commit final

decisions but not those participants that employ PrC.

Based on the that, the coordinator forgets about the

outcome of a committed transaction once the PrN, PrA

and IYV participants acknowledge the commit

decision, knowing that only a participant that uses PrC

might inquire about the decision in the future. If a PrC

participant inquires about a forgotten commit decision,

the coordinator, knowing that the participant uses PrC,

will direct the participant to commit the transaction

using the presumption of PrC employed by the

participant. This is accomplished by the coordinator

even without examining its stable log.

Similarly, if a coordinator makes an abort final

decision, it expects only those participants that employ

PrN and PrC to acknowledge the decision but not those

employing PrA and IYV. Since the coordinator does

not wait for, or even consider, the acknowledgments of

PrN participants when writing the end log record for

an aborted transaction, the coordinator forgets about

the outcome of such a transaction once the PrC

participants acknowledge the abort decision. Hence,

besides PrA and IYV participants, PrN participants

might inquire about a forgotten abort decision. In this

case, the coordinator, knowing that only a participant

that uses an abort-based protocol (i.e., PrN, PrA or

IYV) might inquire about the decision, it will direct

the participant to abort the transaction using the abort

presumption of these three protocols. Again, this is

(a) PrN and PrC participants in I-2PC.

(b) IYV and PrA participants in I-2PC.

Commit
Requested
Transaction

Commit log record
Committing

CommittedCommitted

Commit log record
Committing

CommitCommit Commit log record

Write non−forced
End log record

[PrC]
ji

[PrN]

Active

Prepared

Prepared log
Force Write

Write non−forced

Yes

ACK

Prepare

Force Write

Force Write
Prepared log

Active

Prepared

Prepare

Yes

Force Write
Initiation log record

Force Write

record record

COORDINATORSTATE PARTICIPANT STATE

ActiveActive

PARTICIPANT

Commit
Requested
Transaction

Commit log record
Committing

CommittedCommitted

Committing

CommitCommit Commit log record

Write non−forced
End log record

k
[IYV]

m
[PrA]

Commit log record

Active

Op(n)

Prepared

Active

Prepared

Prepared log
Force Write

Write non−forced

Yes

ACK

Write non−forced

ACK Op(n)redo log record(s)

record

Force Write
Initiation log record

Force Write

Prepare

ACK

Force Write

COORDINATORPARTICIPANT PARTICIPANT STATE

Active

STATE

Figure 2: Committing in presence of contradicting presumptions.

accomplished by the coordinator even without having

to examine its stable log.

Thus, in I-2PC, when a participant inquires a

coordinator about the final outcome of a forgotten

transaction, the coordinator, not remembering the

transaction, it infers the transaction’s outcome from

the presumption used in the inquiring participant’s

protocol. This inference of decisions is always

consistent with the actual final outcome of forgotten

transactions.

The next section thoroughly analyzes all possible

scenarios of communication failures whereas Section

4.2.2 analyzes the recovery aspects of a coordinator’s

site failure. On the other hand, participants’ site

failures are not discussed since they are handled in a

manner similar to the way they are handled in PrN,

PrA, PrC and IYV, depending on the protocol adopted

by each participant

4.2.1. Communication Failures

There are four points during the execution of I-2PC

where a communication failure might occur while a

site is waiting for a message. The first point is when

the coordinator of a transaction has sent an operation

for execution at a participant’s site and is waiting for

an operation acknowledgment from the participant. In

this case, the coordinator aborts the transaction and

sends out abort messages to the rest of the participants.

Similarly, a participant aborts a transaction when a

communication failure occurs and the participant has a

pending operation’s acknowledgment. Notice that the

coordinator of a transaction may commit the

transaction in spite of communication failures with

some participants as long as these participants are IYV

participants and have no pending operations’

acknowledgments.

The second point is when a participant has no

pending operation acknowledgment. If the participant

is using a 2PC variant, it aborts the transaction. On the

other hand, if the participant is using IYV, in

accordance to IYV, the participant is left blocked until

communication is re-established with the coordinator.

Then, the participant inquires the coordinator about the

transaction’s status. If the coordinator has already

committed the transaction, it must have been waiting

for the commit acknowledgment of the participant.

Based on that, the coordinator replies with a commit

message and waits for an acknowledgment. If the

coordinator has aborted the transaction and still

remembers it (i.e, the transaction is still in the

protocol table), the coordinator replies with an abort

decision. If the coordinator does not remember the

transaction, it means that the coordinator must have

aborted the transaction. In this case, it replies with an

abort message using the presumption of IYV, which is

the presumption used in the protocol of the inquiring

participant. If the transaction is still active in the

system, the coordinator replies with a still active

message, following IYV protocol. When the

participant receives a final decision, the participant

enforces the decision and writes a non-forced decision

(i.e., commit or abort) log record. Then, if the decision

is commit, the participant also acknowledges the

decision (after the decision is written onto the stable

log). If the participant receives a still active message,

the participant waits for further operations.

The third point is when a coordinator is waiting for

the votes of 2PC participants. In this case, the

coordinator treats communication failures as “No”

votes and aborts the transaction. As during normal

processing, once the coordinator has aborted a

transaction, it sends out abort messages to all

accessible participants and waits for the required

acknowledgments. For an inaccessible participant, the

participant is left blocked if has voted “Yes” before the

communication failure and it is the responsibility of

the participant to inquire about the transaction’s status

after the failure is fixed. If the coordinator receives an

inquiry message after the failure has been fixed, the

coordinator either still remembers the aborted

transaction (because the transaction has an initiation

record in its protocol table and some participants are

(a) PrN and PrC participants in I-2PC.

(b) IYV and PrA participants in I-2PC.

Commit
Requested
Transaction

Write non−forced
End log record

Abort log recordAbort log record
Aborting

Aborted

Aborting

Aborted

Participant
Voted No l

AbortAbort

An ACK message is sent back by a PrN participant which is ignored by the coordinator.

[PrC]
ji

[PrN]

Active

Prepared

Prepared log
Force Write

Yes

ACK

Prepare

Force Write
Prepared log

Active

Prepared

Prepare

Yes

Force Write
Initiation log record

record record

Force Write Force Write

ACK

COORDINATOR PARTICIPANT STATESTATE PARTICIPANT

ActiveActive

Commit
Requested
Transaction

Aborting

Aborted

Aborting

Aborted

AbortAbort

Abort log record Abort log record

Paricipant
Voted No l

k
[IYV] [PrA]

m

Active

Op(n)

Prepared

Active

Prepared

Prepared log
Force Write

Write non−forced

Yes

Write non−forced

ACK Op(n)redo log record(s)

record

Force Write
Initiation log record

Prepare

Write non−forced

STATE PARTICIPANT STATEPARTICIPANT

Active

COORDINATOR

Figure 3: Aborting in presence of contradicting presumptions.

using PrC) or it has aborted and forgotten the

transaction. In the former case, the coordinator sends

back an abort message. It also waits for an

acknowledgment if the participant is using PrC. Once

the participant has received the abort message, it aborts

the transaction and sends back an acknowledgment

only if it uses PrC. In the latter case, since the

coordinator does not remember the transaction and the

transaction has been aborted, it means that the

inquiring participant must be a PrN or PrA participant.

Based on that, the coordinator replies with an abort

message using the presumption of PrN or PrA, which

is the presumption used in the protocol of the inquiring

participant.

 The fourth point is when the coordinator of a

transaction is waiting for the acknowledgments of a

final decision. Since the coordinator needs the

acknowledgments in order to discard the information

pertaining to the transaction from its protocol table and

its log (during the garbage collection procedure), it re-

sends the decision to the appropriate participants once

communication failures are fixed. That is, if the

decision is commit, the coordinator re-sends the

decision to each inaccessible PrN, PrA and IYV

participant. On the other hand, if the decision is abort,

the coordinator re-sends the decision to each

inaccessible PrC participant. When an IYV participant

receives a commit decision after a failure, it either

acknowledges the decision if it has already received

and enforced the decision prior to the failure (i.e., the

participant has no recollection about the transaction),

or enforces the decision, writes a non-forced commit

log record and then sends back an acknowledgment

(after the decision is written onto the stable log).

Similarly, when a 2PC participant receives a decision,

it either acknowledges the decision if it has already

received and enforced the decision prior to the failure,

or enforces the decision, force writes a decision record

and then acknowledges the decision. Once the

coordinator has received the required

acknowledgments, it writes an end log record, as

during normal processing, and forgets the transaction.

4.2.2. Coordinator’s Failure

Upon a coordinator’s restart after a failure, the

coordinator re-builds its protocol table by scanning its

stable log. The coordinator needs to complete the

commit protocol for each incomplete transaction.

Hence, it needs to consider only the following

transactions during its recovery procedure:

1. Each transaction with an initiation log record but

without a corresponding commit and end records -

the coordinator knows that either PrC or I-2PC

(with contradicting presumptions) was used for the

commit processing of the transaction. In either case,

the coordinator considers the transaction aborted

and sends an abort message to each PrC participant

recorded in the initiation record and waits for

acknowledgments.

2. Each transaction with an initiation log record and a

commit record but without an end record - the

coordinator knows that either PrC or I-2PC (with

contradicting presumptions) was used for the

commit processing of the transaction. Based on the

identities of the participants recorded in the

initiation record, if I-2PC was used, the coordinator

sends commit messages to all participants recorded

in the initiation record except those using PrC and

waits for acknowledgments.

3. Each transaction with a commit record but without

an initiation and an end record - the coordinator

knows that either PrN, PrA, IYV or I-2PC (without

contradicting presumptions) was used for the

commit processing of the transaction. In either case,

the coordinator sends a commit message to each

participant recorded in the commit decision record

and waits for acknowledgments.

In all the three cases above, when a participant

receives a decision message, it either acknowledges the

message if it has already received and enforced the

decision prior to the failure, or enforces the decision,

writes the required log record and then sends back an

acknowledgment. Once the coordinator receives the

required acknowledgments for a transaction, it writes

an end log record an forgets the transaction.

For all other transactions, the coordinator can safely

ignore them during its recovery procedure and

considers them completed transactions. If a participant

inquires about a transaction that has been considered

completed by the coordinator, regardless of the

protocol used for the termination of the transaction,

the coordinator, not remembering the transaction, it

replies with a decision that matches the presumption

used in the protocol of the inquiring participant (as

recorded in the PCP).

4.2.3. Proof of Correctness

The above discussion provides an iterative method

that prove the correctness of I-2PC in the presence of

site and communication failures. That is, it enumerates

all possible points of site and communication failures

during the course of the protocol and shows how to

deal with them. This leads to the following theorem.

Theorem 4: The I-2PC protocol satisfies the

operational correctness criterion.

Proof: To show the correctness of I-2PC according to

operational correctness, we need to show that all the

three requirements of operational correctness are

satisfied. The first and the third requirements of the

operational correctness criterion are satisfied since all

participants in a transaction’s execution will reach an

agreement and forget about the transaction, as we

iteratively proven in the previous two sections. The

only remaining requirement that needs to be proven is

the second one which requires that the coordinator

should eventually be able to forget about the outcome

of transactions. I-2PC also satisfies this requirement

because a transaction is forgotten once all required

acknowledgments arrive from the participants. What

we need to prove is that a coordinator never sacrifices

the consistency of its decisions even though it might be

using different protocols for the termination of

different transactions (i.e., I-2PC, PrN, PrA, PrC or

IYV). We prove this part by considering the two

possible outcome of transactions. For the prove of this

part, we recall that, in the absence of information, a

coordinator of a transaction always uses the

presumption adopted by the protocol of the inquiring

participant. This is regardless of the actual protocol

that has been used for the termination of the

transaction. The prove proceeds by contradiction.

Commit Case: Assume that the coordinator has made

a commit decision and after forgetting the transaction,

it replies to an inquiry message with an abort decision.

If the inquiring participant is PrC, the coordinator

will use the commit presumption of PrC and will

respond with a commit decision which contradicts the

initial assumption.

In order to reply with an abort, it means that

coordinator has used the abort presumption. This

means that the message is from either a PrN, PrA or

IYV participant which is impossible since all PrN, PrA

and IYV participants must have acknowledged the

commit decision in order for the coordinator to forget

the outcome of the transaction.

Abort Case: Assume that the coordinator has made an

abort decision and after forgetting the transaction, it

replies to an inquiry message with a commit decision.

If the inquiring participant is PrN, PrA or IYV, the

coordinator will use the abort presumption and will

respond with an abort decision which contradicts the

initial assumption.

In order to reply with a commit, it means that the

coordinator has used the commit presumption. This

means that the message is from a PrC participant

which is impossible since all PrC participants must

have acknowledged the abort decision in order for the

coordinator to forget the outcome of the transaction. □

5. Conclusion

With the current advances in Internet applications,

it is imperative to support universal transactional

access and, in particular, guaranteeing the atomicity

property of transactions in the presence of

incompatible atomic commit protocols (ACPs).

Detailed analysis showed the dimensions of

incompatibilities among ACPs. Then, the significance

of the analytical results was demonstrated through the

development of a new ACP called “integrated two-

phase commit” (I-2PC) that integrates the most

commonly known ACPs, with respect to applicability

and performance, in a practical manner and in spite of

their incompatibilities.

The results of this work should help in a better

understanding to atomicity in heterogeneous

environments where the different database sites do not

unanimously adopt the same ACP. It should also

stimulate the development of new and more flexible

methods that support the interoperability characteristic

of today’s software application systems especially for

those emerging environments such as mobile database

systems and e-government.

References

[1] Al-Houmaily, Y., “On Interoperating Incompatible

Atomic Commit Protocols in Distributed

Databases,” in Proc. of the 1
st
 IEEE Int’l Conf. on

Computers, Communications, and Signal

Processing, Nov. 2005.

[2] Al-Houmaily, Y. and P. Chrysanthis, “Atomicity

with Incompatible Presumptions,” in Proc. of the

18
th
 ACM PODS, May 1999.

[3] Al-Houmaily, Y. and P. Chrysanthis, “An Atomic

Commit Protocol for Gigabit-Networked

Distributed Database systems,” Journal of Systems

Architecture, vol. 46, pp. 809-833, 2000.

[4] Al-Houmaily, Y., P. Chrysanthis and S. Levitan,

“An Argument in Favor of the Presumed Commit

Protocol,” in Proc. of the 13
th
 ICDE, April 1997.

[5] Bernstein, P., V. Hadzilacos and N. Goodman,

“Concurrency Control and Recovery in Database

Systems,” Addison-Wesley, Reading, MA, 1987.

[6] Braginski, E., “The X/Open DTP Effort,” in Proc.

of the 4
th
 Int'l Workshop on HPTS, Asilomar,

California, 1991.

[7] Breitbart, Y., H. Garcia-Molina, and A.

Silberschatz, “Overview of Multidatabase

Transaction Management,” VLDB Journal, vol. 1,

no. 2, October 1992.

[8] Chrysanthis, P. and K. Ramamritham, “Synthesis

of Extended Transaction Models using ACTA,”

ACM TODS, vol. 19, no. 3, pp. 450-491,

September 1994.

[9] Chrysanthis, P. and K. Ramamritham, “Autonomy

Requirements in Heterogeneous Distributed

Database Systems,” in Proc. of the 6
th
 Int'l Conf.

on Management of Data, pp. 283-302, December

1994.

[10] Chrysanthis, P., G. Samaras and Y. Al-

Houmaily, “Recovery and Performance of Atomic

Commit Processing in Distributed Database

Systems,” (Chapter 13), in V. Kumar and M. Hsu

(Eds.), Recovery Mechanisms in Database

Systems, Prentice Hall, 1998.

[11] Gray, J., “Notes on Data Base Operating

Systems,” in Bayer R., R.M. Graham, and G.

Seegmuller (Eds.), Operating Systems: An

Advanced Course, LNCS, vol. 60, pp. 393-481,

Springer-Verlag, 1978.

[12] Haritsa, J., K. Ramamritham and R. Gupta,

“The PROMPT Real-Time Commit Protocol,”

IEEE Transactions on Parallel and Distributed

Systems, vol. 11, no, 2, 2000.

[13] Lampson, B. “Atomic Transactions,” in B.

Lampson (Ed.), Distributed Systems: Architecture

and Implementation - An Advanced Course,

LNCS, vol. 105, pp. 246-265, Springer-Verlag,

1981.

[14] Lampson, B. and D. Lomet, “A New

Presumed Commit Optimization for Two Phase

Commit,” in Proc. of the 19
th
 Int'l Conf. on VLDB,

pp. 630-640, Aug. 1993.

[15] Lee, I. and H. Yeom. “A Single Phase

Distributed Commit Protocol for Main Memory

Database Systems,” 6
th
 Int’l Parallel and

Distributed Processing Symposium (IPDPS), April

2002, Fort Lauderdale, FL, USA, 2002.

[16] Mohan, C., B. Lindsay and R. Obermarck,

“Transaction Management in the R* Distributed

Data Base Management System,” ACM TODS,

vol. 11, no. 4, pp. 378-396, Dec. 1986.

[17] Nouali, N., H. Drias and A. Doucet, “A

Mobility-Aware Two-Phase Commit Protocol,”

Int’l Arab Journal of Information Technology, vol.

3, no. 1, 2006.

[18] Skeen, D. and M. Stonebraker, “A Formal

Model of Crash Recovery in a Distributed

System,” IEEE TSE, vol. SE-9, no. 3, May 1983.

[19] Tal, A. and R. Alonso, “Integration of Commit

Protocols in Heterogeneous Databases,”

Distributed and Parallel Databases, vol. 2, no. 2,

pp. 209-234, Apr. 1994.

[20] Upton IV, F., “OSI Distributed Transaction

Processing, An Overview,” in Proc. of the 4
th
 Int'l

Workshop on HPTS, Asilomar, CA, Sep. 1991.

[21] Yu, W. and C. Pu, “A Dynamic Two-Phase

Commit Protocol for Adaptive Composite

Services,” Int’l Journal of Web Services Research,

vol. 4, no. 1, 2007.

Yousef J. Al-Houmaily
received a B.S. in Computer

Engineering from King Saud

University, Riyadh, Saudi

Arabia in 1986, a M.S. in

Computer Science from George

Washington University,

Washington D.C. in 1990, and a

Ph.D. in Computer Engineering

from the University of

Pittsburgh, Pittsburgh, Pennsylvania in 1997.

Currently, Dr. Al-Houmaily is an Assistant

Professor at the Department of Computer and

Information Programs, Institute of Public

Administration, Riyadh, Saudi Arabia. Dr. Al-

Houmaily was the Director of Computer and

Information Programs at the Institute of Public

Administration from November 1997 till June 2002.

He also served (or currently serving) on a number of

important councils and committees at the Institute of

Public Administration including the Academic

Council, the Permanent Academic Promotion

Committee, the Educational Staff Recruitment

Committee and the Permanent Committee for

Information and Technology. On the Saudi national

level, he served on a number of committees of which

his membership in the General Commission for the

Ministerial Committee for Administrative

Organization. Dr. Al-Houmaily worked as a consultant

to a number of government agencies in Saudi Arabia

including the Deputy Prime Minister’s Office, the

Control and Investigation Board and the General

Presidency for Girls Education. From July, 2005 till

June, 2006 he was a Visiting Assistant Professor at the

David R. Cheriton School of Computer Science,

University of Waterloo, Ontario, Canada, where he

taught database courses at both the undergraduate and

graduate levels.

Dr. Al-Houmaily’s current research interests are in

the areas of database systems, mobile distributed

computing systems and sensor networks. His

publication record contains over twenty scientific

articles and two books (that are written in the Arabic

language). Dr. Al-Houmaily’s professional activities

include his membership to a number of professional

organizations and his services as a referee and a

reviewer to several research centers, international

conferences and international journals. Besides that, he

frequently serves on the Program Committees of

international conferences.

