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Abstract. The one-two phase commit (1-2PC) protocol is a combina-
tion of a one-phase atomic commit protocol, namely, implicit yes-vote,
and a two-phase atomic commit protocol, namely, presumed commit.
The 1-2PC protocol integrates these two protocols in a dynamic fashion,
depending on the behavior of transactions and system requirements, in
spite of their incompatibilities. This paper extends the applicability of
1-2PC to the multi-level transaction execution model, which is adopted
by database standards. Besides allowing incompatible atomic commit
protocols to co-exist in the same environment, 1-2PC has the advan-
tage of enhanced performance over the currently known atomic commit
protocols making it more suitable for Internet database applications.

1 Introduction

The two-phase commit (2PC) protocol [9,12] is one of the most widely used
and optimized atomic commit protocols (ACPs). Tt ensures atomicity and inde-
pendent recovery but at a substantial cost during normal transaction execution
which adversely affects the performance of the system. This is due to the costs
associated with its message complezity (i.e., the number of messages used for co-
ordinating the actions of the different sites) and log complezity (i.e., the amount
of information that needs to be stored in the stable storage of the participating
sites for failure recovery). For this reason, there has been a re-newed interest
in developing more efficient ACPs and optimizations. This is especially impor-
tant given the current advances in electronic services and electronic commerce
environments that are characterized by high volume of transactions where com-
mit processing overhead is more pronounced. Most notable results that aim at
reducing the cost of commit processing are one-phase commit (1PC) protocols
such as implicit yes-vote (IYV) [4,6] and coordinator log (CL) [19].

Although 1PC protocols are, in general, more efficient than 2PC protocols,
1PC protocols place assumptions on transactions or the database management



systems (DBMSs). Whereas some of these assumptions are realistic (i.e., reflect
how DBMSs are usually implemented), others can be considered restrictive in
some applications [1, 6]. For example, 1PC protocols restrict the implementation
of applications that wish to utilize deferred consistency constraints validation,
an option that is specified in the SQL standards.

The one-two phase commit (1-2PC) protocol attempts to achieve the best
of the two worlds. Namely, the performance of 1PC and the wide applicability
of 2PC. Tt is essentially a combination of 1PC (in particular, IYV) and 2PC
(in particular, Presumed Commit — PrC [16]). Tt starts as 1PC and dynamically
switches to 2PC when necessary. Thus, 1-2PC achieves the performance advan-
tages of 1PC protocols whenever possible and, at the same time, the wide appli-
cability of 2PC protocols. In other words, 1-2PC supports deferred constraints
without penalizing those transactions that do not require them. Furthermore,
1-2PC achieves this advantage on a participant (cohort) basis within the same
transaction in spite of the incompatibilities between the 1PC and 2PC protocols.

This paper extends the applicability of 1-2PC to the multi-level transaction
execution (MLTE) model, the one adopted by database standards and imple-
mented in commercial systems. The MLTE model is specially important in the
context of Internet transactions since they are hierarchical in nature, making
1-2PC more suitable for Internet database applications.

In Section 2, we review PrC, IYV and 1-2PC. Multi-level 1-2PC'is introduced
in Section 3. The performance of 1-2PC is analytically evaluated in Section 4.

2 Background

A distributed/Internet transaction accesses data by submitting operations to its
coordinator. The coordinator of a transaction is assumed to be the transaction
manager at the site where the transaction is initiated. Depending on the data
distribution, the coordinator decomposes the transaction into a set of subtrans-
actions, each of which executes at a single participating database site (cohort).

In the multi-level transaction execution (MLTE) model, it is possible for a
cohort, to decompose its assigned subtransactions further. Thus, a transaction
execution can be represented by a multi-level execution tree with its coordi-
nator at the root, and with a number of intermediate and leaf cohorts. When
the transaction finishes its execution and submits its final commit request, the
coordinator initiates an atomic commit protocol.

2.1 Presumed Commit Two-Phase Commit Protocol

Presumed Commit (PrC) [16] is one of the best known variants of the two-phase
commit protocol which consist of a voting phase and a decision phase. During the
voting phase, the coordinator requests all cohorts to prepare to commit whereas,
during the decision phase, the coordinator either commits the transaction if all
cohorts are prepared-to-commit (voted “yes”), or aborts the transaction if any
cohort has decided to abort (voted “no”).



In general, when a cohort receives the final decision and complies with the
decision, it sends an acknowledgment (ACK). ACKs enable a coordinator to
discards all information pertaining to a transaction from its protocol table (that
is kept in main memory), and forgets the transaction. Once the coordinator
receives ACKs from all the cohorts, it knows that all cohorts have received the
decision and none of them will inquire about the status of the transaction in
the future. In PrC, cohorts ACK only abort decisions and not commit ones. A
coordinator removes a transaction from its protocol table either when it makes
a commit decision or when it receives ACKs from all cohorts in the case of abort
decision. This means that in case of a status inquiry, a coordinator can interpret
lack of information on a transaction to indicate a commit decision.

In PrC, misinterpretation of missing information as a commit after a coordi-
nator’s failure is avoided by requiring coordinators to record in a force written
initiation log record all the cohorts for each transaction before sending prepare
to commit messages to the cohorts. To commit a transaction, the coordinator
force writes a commit record to logically eliminate the initiation record of the
transaction and then sends out the commit decision. When a cohort receives
the decision, it writes a non-forced commit record and commits the transaction
without having to ACK the decision. After a coordinator or a cohort failure, if
the cohort inquires about a committed transaction, the coordinator, not remem-
bering the transaction, will direct the cohort to commit it (by presumption).

To abort a transaction, the coordinator does not write an abort decision in
its log. Instead, it sends out the abort decision and waits for ACKs. When a
cohort receives the decision, it force writes an abort record and sends an ACK.

In the MLTE model, the behavior of the root coordinator and each leaf cohort
remains the same as in two-level transactions. The only difference is the behavior
of cascaded coordinators (i.e., non-root and non-leaf cohorts) which behave as leaf
cohorts with respect to their direct ancestors and root coordinators with respect
to their direct descendants. In multi-level PrC, each cascaded coordinator has
to force write an initiation record before propagating the prepare to commit
message to its descendant cohorts. On abort decision, it notifies its descendants,
force writes an abort record and, then, acknowledge its ancestor. It forgets the
transaction when it receives ACKs from all its descendants. On commit decision,
a cascaded coordinator propagates the decision to its descendants, writes a non-
forced commit record and, then, forgets the transaction.

2.2 Implicit Yes-Vote One-Phase Commit Protocol

Unlike PrC, the implicit yes-vote (TYV) [4,6] protocol consist of only a single
phase which is the decision phase. The (explicit) voting phase is eliminated by
overlapping it with the ACKs of the database operations. IYV assumes that each
site deploys (1) a strict two-phase locking and (2) physical page-level replicated-
write—ahead logging with the undo phase preceding the redo phase for recovery.

InIYV, when the coordinator of a transaction receives an ACK from a cohort
regarding the completion of an operation, the ACK is implicitly interpreted to
mean that the transaction is in a prepared-to-commit state at the cohort. When



the cohort receives a new operation for execution, the transaction becomes active
again at the cohort and can be aborted, for example, if it causes a deadlock or
violation to any of the site’s database consistency constraints. If the transaction
is aborted, the cohort responds with a negative ACK message (NACK). Only
when all the operations of the transaction are executed and acknowledged by
their perspective cohorts, the coordinator commits the transaction. Otherwise,
it aborts the transaction. In either case, the coordinator propagates its decision
to all the cohorts and waits for their ACKs.

IYV handles cohort failures by partially replicating its log rather than force
writing the log before each ACK. Each cohort includes the redo log records that
are generated during the execution of an operation in the operation’s ACK. Each
cohort also includes the read locks acquired during the execution of an operation
in the ACK in order to support the option of forward recovery [6]. After a crash,
a cohort reconstructs the state of its database, which includes its log and lock
table as it was just prior to the failure with the help of the coordinators. To limit
the number of coordinators that need to be contacted after a site failure, each
cohort maintains a recovery-coordinators’ list (RCL) which is kept in the stable
log. At the same time, by maintaining a local log and using WAL, each cohort
is able to undo the effects of aborted transactions locally using only its own log.

In multi-level 1YV, the behavior of a root coordinator and leaf cohorts re-
mains the same as in IYV, whereas cascaded coordinators are responsible about
the coordination of ACKs of individual operations.

As in the case of the (two-level) TYV, only a root coordinator maintains a
replicated redo log for each of the cohorts. When a cascaded coordinator re-
ceives ACKs from all its descendants that participated in the execution of an
operation, it sends an ACK to its direct ancestor containing the redo log records
generated across all cohorts and the read locks held at them during the execu-
tion of the operation. Thus, after the successful execution of each operation, root
coordinator knows all the cohorts (i.e., both leaf and cascaded coordinators) in
a transaction. Similarly, each cohort knows the identity of the root coordinator
which is reflected in its RCL. The identity of the root coordinator is attached to
each operation send by the root and cascaded coordinators.

While the execution phase of a transaction is multi-level, the decision phase
is not. Since the root coordinator knows all the cohorts at the time the trans-
action finishes its execution it sends its decision directly to each cohort without
going through cascaded coordinators. Similarly, each cohort sends its ACK of
the decision directly to the root coordinator. This is similar to the flattening of
the commit tree optimization [17].

2.3 The 1-2PC Protocol

1-2PC is a composite protocol that inter-operates IYV and PrC in a practical
manner in spite of their incompatibilities. In 1-2PC, a transaction starts as 1PC
at each cohort and continuous this way until the cohort executes a deferred
consistency constraint. When a cohort executes such a constraint, it means that
the constraint needs to be synchronized at commit time. For this reason, the



cohort switches to 2PC and sends an unsolicited deferred consistency constraint
(UDCC) message to the coordinator. The UDCC is a flag that is set as part
of a switch message, which also serves as an ACK for the operation’s successful
execution. When the coordinator receives the switch message, it switches the
protocol used with the cohort to 2PC.

When a transaction sends its final commit primitive, the coordinator knows
which cohorts are 1PC and which cohorts are 2PC. If all cohorts are 1PC (i.e.,
no cohort has executed deferred constraints), the coordinator behaves as an TYV
coordinator. On the other hand, if all cohorts are 2PC, the coordinator behaves
as a PrC coordinator with the exception that the initiation log record (of PrC)
is now called a switch log record.

When the cohorts are mixed 1PC and 2PC in a transaction’s execution, the
coordinator resolves the incompatibilities between the two protocols as follows:
(1) Tt “ talks” TYV with 1PC cohorts, and PrC with 2PC cohorts and (2) ini-
tiates the voting phase with 2PC cohorts before making the final decision and
propagating the final decision to all cohorts. This is because a “no” vote from a
2PC cohort is a veto that aborts a transaction. Further, in order to be able to
reply to the inquiry messages of the cohorts after failures, 1-2PC synchronizes
the timing at which it forgets the outcome of terminated transactions. A coor-
dinator forgets the outcome of a committed transaction when all 1PC cohorts
ACK the commit decision, and the outcome of an aborted transaction when all
2PC cohorts ACK the abort decision. In this way, when a cohort inquires about
the outcome of a forgotten transaction, the coordinator replies with a decision
that matches the presumption of the protocol used by the cohort which is always
consistent with the actual outcome of the transaction.

1-2PC has been optimized for read-only transactions and for context-free
transactions with a forward recovery option [3] but never extended for multi-
level transactions which is done in the next section.

3 The Multi-Level 1-2PC Protocol

Extending the 1-2PC for multi-level transactions, there are three cases to con-
sider: (1) all cohorts are 1PC, (2) all cohorts are 2PC and (3) cohorts are mixed
1PC and 2PC. We discuss each of these cases in the following three sections.

3.1 All Cohorts are 1PC

In the multi-level 1-2PC, the behavior of the root coordinator and each leaf co-
hort in the transaction execution tree remains the same as in two-level 1-2PC.
The only difference is the behavior of cascaded coordinators which is similar to
that of the cascaded coordinators in the multi-level IYV. Since an operation’s
ACK represents the successful execution of the operation at the cascaded coordi-
nator and all its descendants that have participated in the operation’s execution,
the cascaded coordinator has to wait until it receives ACKs from the required de-
scendants before sending the (collective) ACK and redo log records to its direct



coordinator in the transaction execution tree. Thus, when a transaction finishes
its execution, all its redo records are replicated at the root coordinator’s site. As
in the two-level 1-2PC, only root coordinators are responsible for maintaining
the replicated redo log records and a root coordinator knows all the cohorts (i.e.,
both leaf and cascaded coordinators).

The identity of the root coordinator is attached to each operation send by the
root and cascaded coordinators. When a cohort receives an operation from a root
coordinator for the first time, it records the coordinator’s identity in its RCL
and force writes its RCL into stable storage. A cohort removes the identity of a
root coordinator from its RCL, when it commits or aborts the last transaction
submitted by the root coordinator.

Asin IYV, if a cohort fails to process an operation, it aborts the transaction
and sends a NACK to its direct ancestor. If the cohort is a cascaded coordina-
tor, it also sends an abort message to each implicitly prepared cohort Then, the
cohort forgets the transaction. When the root or a cascaded coordinator receives
NACK from a direct descendant, it aborts the transaction and sends abort mes-
sages to all direct descendants and forgets the transaction. The root coordinator
behaves similarly when it receives an abort request from a transaction.

On the other hand, if the root coordinator receives a commit request from
the transaction after the successful execution of all its operations, the coordina-
tor commits the transaction. On a commit decision, the coordinator force writes
a commit log record and then sends commit messages to each of its direct de-
scendants. If a descendant is a leaf cohort, it commits the transaction, writes a
non-forced log record and, when the log record is flushed into the stable log, it
acknowledges the commit decision.

If the cohort is a cascaded coordinator, the cohort commits the transaction,
forwards a commit message to each of its direct descendants and writes a non-
forced commit log record. When the cascaded coordinator receives ACKs from
all its direct descendants and the commit log record that it wrote had been
flushed into the stable log, the cohort acknowledges the commit decision to its
direct ancestor. Thus, the ACK serves as a collective ACK for the entire cascaded
coordinator’s branch.

3.2 All Cohorts are 2PC

At the end of the transaction execution phase, the coordinator declares the
transaction as 2PC if all cohorts have switched to 2PC. When all cohorts are
2PC, 1-2PC can be extended to the MLTE model in a manner similar to the
multi-level PrC which we briefly discussed in Section 2.1 and detailed in [5].
However, multi-level 1-2PC is designed in such a way that 1-2PC does not realize
the commit presumption of PrC on every two adjacent levels of the transaction
execution tree. In this respect, it is similar to the rooted PrC which reduces the
cost associated with the initiation records of PrC [5].

Specifically, cascaded coordinators do not force write switch records which
are equivalent to the initiation records of PrC and, consequently, do not presume
commitment in the case that they do not remember transactions. For this reason,



in multi-level 1-2PC, the root coordinator needs to know all the cohorts at all
levels in a transaction’s execution tree. Similarly, each cohort needs to know
all its ancestors in the transaction’s execution tree. The former allows the root
coordinator to determine when it can safely forget a transaction while the latter
allows a prepared to commit cohort at any level in a transaction’s execution
tree to find out the final correct outcome of the transaction, even if intermediate
cascaded coordinators have no recollection about the transaction due to a failure.

In order for the root coordinator to know the identities of all cohorts, each
cohort includes its identity in the ACKs of the first operation that it executes.
When a cascaded coordinator receives such an ACK from a cohort, it also in-
cludes its identity in the ACK. In this way, the identities of all cohorts and the
chain of their ancestors are propagated to the root coordinator. When the trans-
action submits its commit request, assuming that that all cohorts have requested
to switch to 2PC during the execution of the transaction, the coordinator force
writes a switch record, as in two-level 1-2PC. The switch log record includes
the identities of all cohorts in the transaction execution tree. Then, it sends out
prepare to commit messages to its direct descendants.

When the coordinator sends the prepare to commit message, it includes its
identity in the message. When a cascaded coordinator receives the prepare to
commit message, it appends its own identity to the message before forwarding
it to its direct descendants. When a leaf cohort receives a prepare to commit
message, it copies the identities of its ancestors in the prepared log record before
sending its “Yes” vote. When a cascaded coordinator receives “Yes” votes from
all its direct descendants, the cascaded coordinator also records the identities of
its ancestors as well as its descendants in its prepared log record before sending
its collective “Yes” vote to its direct ancestor.

If any direct descendant has voted “No”, the cascaded coordinator force
writes an abort log record, sends a “No” vote to its direct ancestor and an
abort message to each direct descendant that has voted “Yes” and waits for
their ACKs. Once all the abort ACKs arrive, the cascaded coordinator writes a
non-forced end record and forgets the transaction.

As in multi-level PrC, when the root coordinator receives “Yes” votes from
all its direct descendants, it force writes a commit record, sends its decision to
its direct descendants and forgets the transaction. When a cascaded coordinator
receives a commit message, it commits the transaction, propagates the message
to its direct descendants, writes a non-forced commit record and forgets the
transaction. When a leaf cohort receives the message, it commits the transaction
and writes a non-forced commit record.

If the root coordinator receives a “No” vote, it sends an abort decision to
all direct descendants that have voted “Yes” and waits for their ACKs, knowing
that all the descendants of a direct descendant that has voted “No” have already
aborted the transaction. When the coordinator receives all the ACKs, it writes a
non-forced end record and forgets the transaction. When a cascaded coordinator
receives the abort message, it behaves as in multi-level PrC. That is, it prop-
agates the message to its direct descendants and writes a forced abort record.
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Fig. 1. Mixed cohorts in a 2PC cascaded coordinator’s branch (commit case).

Then, it acknowledges its direct ancestor. Once the cascaded coordinator has
received ACKs from all its direct descendants, it writes a non-forced end record
and forgets the transaction. When a leaf cohort receives the abort message, it
first force writes an abort record and, then, acknowledges its direct ancestor.

3.3 Cohorts are Mixed 1PC and 2PC

Based on the information received from the different cohorts during the execu-
tion of a transaction, at commit time the coordinator of the transaction knows
the protocol of each of the cohorts. It also knows the execution tree of the trans-
action. That is, it knows all the ancestors of each cohort and whether a cohort is
a cascaded coordinator or a leaf cohort. Based on this knowledge, the coordina-
tor considers a direct descendant to be 1PC if the descendant and all the cohorts
in its branch are 1PC, and 2PC if the direct descendant or any of the cohorts
in its branch is 2PC. For a 1PC branch, the coordinator uses the 1PC part of
multi-level 1-2PC with the branch, as we discussed above (Section 3.1). For a
2PC branch, the coordinator uses 2PC regardless of whether the direct descen-
dant is 1PC or 2PC. That is, the coordinator uses the 2PC part of multi-level
1-2PC discussed in the previous section (Section 3.2). Thus, with the exception
in the way a coordinator’s decide on which protocol to use with each of its direct
descendants, the coordinator’s protocol proceeds as in the two-level 1-2PC.

For leaf cohorts, each cohort behaves exactly in the same way as in two-level
1-2PC regardless of whether the leaf cohort descends from a 1PC or 2PC branch.
That is, a cohort behaves as 1PC cohort if it has not requested to switch protocol
or as 2PC if has made such a request during the execution of the transaction.
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Fig. 2. Mixed cohorts in a 2PC cascaded coordinator’s branch (abort case).

On the other hand, the behavior of cascaded coordinators is different and
depends on the types of its descendant cohorts in the branch. A cascaded coor-
dinator uses multi-level 1PC when all the cohorts in its branch, including itself,
are 1PC. Similarly, a cascaded coordinator uses multi-level 2PC when all the co-
horts in the branch, including itself, are 2PC. Thus, in the above two situations,
a cascaded coordinator uses multi-level 1-2PC as we discussed it in the previous
two sections, respectively.

When the protocol used by a cascaded coordinator is different than the proto-
col used by at least one of its descendants (not necessarily a direct descendant),
there are two scenarios to consider. Since, for each scenario, cascaded coordina-
tors behave the same way at any level of the transaction execution tree, below
we discuss the case of the last cascaded coordinator in a branch.

2PC cascaded coordinator with 1PC cohort(s) When a 2PC cascaded
coordinator receives a prepare message from its ancestor after the transaction
has finished its execution, the cascaded coordinator forwards the message to each
2PC cohort and waits for their votes. If any cohort has decided to abort, the
cascaded coordinator force writes an abort log record, then, sends a “no” vote to
its direct ancestor and an abort message to each prepared cohort (including 1PC
cohorts). Then, it waits for the ACKs from the prepared 2PC cohorts. Once it
receives the required ACKs, it writes a non-forced end log record and forgets the
transaction. On the other hand, if all the 2PC cohort have voted “yes” and the
cascaded coordinator’s own vote is a “yes” vote too, the cascaded coordinator
force writes a prepared log record and then sends a (collective) “yes” vote of the
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branch to the its direct ancestor, as shown in Figure 1. Then, it waits for the
final decision.

If the final decision is a commit (Figure 1), the cascaded coordinator forwards
the decision to each of its direct descendants (both 1PC and 2PC), and writes a
commit log record. The commit log record of the cascaded coordinator is written
in a non-forced manner, following PrC protocol. Unlike PrC, however, a cascaded
coordinator expects each 1PC cohort to acknowledge the commit message but
not 2PC cohorts since they follow PrC. When a cascaded coordinator receives
ACKs from 1PC cohorts, it writes a non-forced end log record. When the end
record is written into the stable log due to a subsequent forced write of a log
record or log buffer overflow, the cascaded coordinator sends a collective ACK
to its direct ancestor and forgets the transaction.

On the other hand, if the final decision is an abort (Figure 2), the cascaded
coordinator sends an abort message to each of its descendants and writes a forced
abort log record (following PrC protocol). When 2PC cohorts acknowledge the
abort decision, the cascaded coordinator writes a non-forced end log record. Once
the end record is written onto stable storage due to a subsequent flush of the log
buffer, the cascaded coordinator sends an ACK to its direct ancestor and forgets
the transaction.

Notice that, unlike two-level 1-2PC, a 2PC cohort that is cascaded coordi-
nator has to acknowledge both commit and abort decisions. A commit ACK
reflects the ACKs of all 1PC cohorts while an abort ACK reflects the ACKs of
all 2PC cohorts (including the cascaded coordinator’s ACK).

1PC cascaded coordinator with 2PC cohort(s) As mentioned above, a
1PC cascaded coordinator with 2PC cohorts is dealt with as 2PC with respect
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to messages. Specifically, when a 1PC cascaded coordinator receives a prepare
message from its ancestor, it forwards the message to each 2PC cohort and waits
for their votes. If any cohort has decided to abort, the cascaded coordinator force
writes an abort log record, then, sends a “no” vote to its direct ancestor and
an abort message to each prepared cohort (including 1PC cohorts). Then, it
waits for the abort ACKs from the prepared 2PC cohorts. Once the cascaded
coordinator receives the required ACKs, it writes a non-forced end log record
and forgets the transaction. On the other hand, if all the 2PC cohort have voted
“yes”, the cascaded coordinator sends a (collective) “yes” vote of the branch to
the its direct ancestor, as shown in Figure 3, and waits for the final decision.

If the final decision is a commit (Figure 3), the cascaded coordinator forwards
the decision to each of its direct descendants (both 1PC and 2PC), and writes a
commit log record. The commit log record of the cascaded coordinator is written
in a non-forced manner, following IYV protocol. Unlike IYV, however, a cascaded
coordinator expects each 1PC cohort to acknowledge the commit message but
not 2PC cohorts since they follow PrC. When a cascaded coordinator receives
ACKs from 1PC cohorts, it writes a non-forced end log record. When the end
record is written into the stable log due to a subsequent forced write of a log
record or log buffer overflow, the cascaded coordinator sends a collective ACK
to its direct ancestor and forgets the transaction.

On the other hand, if the final decision is an abort (Figure 4), the cascaded
coordinator sends an abort message to each of its descendants and writes a non-
forced abort log record (following TYV protocol). When 2PC cohorts acknowledge
the abort decision, the cascaded coordinator writes a non-forced end log record.
Once the end record is written onto stable storage due to a subsequent flush to



the log buffer, the cascaded coordinator sends an ACK to its direct ancestor and
forgets the transaction.

As in the case of a 2PC cascaded coordinator with mixed cohorts, a 1PC
cohort that is cascaded coordinator has to acknowledge both commit as well as
abort decisions. A commit ACK reflects the ACKs of all 1PC cohorts (including
the cascaded coordinator’s ACK) while an abort ACK reflects the ACKs of all
2PC cohorts.

3.4 Recovering from Failures

As in all other atomic commit protocols, site and communication failures are
detected by timeouts. If the root coordinator times out while awaiting the vote
of one of its direct descendants, it makes an abort final decision, sends abort
messages to all its direct descendants and wait for their ACKs to complete the
protocol. Similarly, if a cascaded coordinator times out while awaiting the vote
of one of its direct descendants, it makes an abort decision. It also force writes
an abort log record, sends a “no” vote to its direct ancestor and abort messages
to all its direct descendants and waits for their abort ACKs.

After a site failure, during its recovery process, a 2PC leaf cohort inquires its
direct ancestor about the outcome of each prepared to commit transaction. In
its inquiry message, the cohort includes the identities of its ancestors recorded in
the prepared log record. In this way, if the direct ancestor of the prepared cohort
does not remember the transaction, it uses the list of ancestors included in the
inquiry message to inquire its own direct ancestor about the transaction’s out-
come rather than replying with a commit message by presumption. (Recall that
a 2PC cascaded coordinator does not write initiation records for transactions,
therefore, it cannot presume commitment in the absence of information about a
transaction.) Eventually, either one of the cascaded coordinators in the path of
ancestors will remember the transaction and provide a reply, or the inquiry mes-
sage will finally reach the root coordinator. The root coordinator will respond
with the appropriate decision if it remembers the outcome of the transaction or
will respond with a commit decision by presumption. Once the cohort receives
the reply message, it enforces the decision and sends an ACK only if the decision
is abort.

On the other hand, if the leaf cohort is a 1PC cohort, the cohort uses its
list of RCL to resolve the status of those transactions that were active prior to
the failure, as in IYV. Specifically, the cohort inquires each of the coordinators
recorded in its RCL with a recovering message. Once the repair messages arrive
from the listed coordinators, the cohort repairs its log by applying the missing
redo records and finish its recovery procedure. If the failure is a communication
failure and the cohort is left blocked in an implicit prepared state, the cohort
keeps inquiring its direct ancestor until it receives a final decision. Once the final
decision arrives, the cohort continues its protocol as during normal processing.

In the event that the root coordinator fails, during its recovery process, the
root coordinator identifies and records in its protocol table each transaction with



a switch log record without a corresponding commit or end record. These trans-
actions have not finished their commit processing by the time of the failure and
need to be aborted. For each of these transactions, the coordinator sends an
abort message to its direct descendants, as recorded in the switch record, along
with their lists of descendants in the transaction execution tree. The recipient of
the abort message can be either a cascaded coordinator or a leaf cohort. In the
case of a cascaded coordinator, if it is in a prepared-to-commit state, the cas-
caded coordinator behaves as in the case of normal processing discussed above.
Otherwise, it responds with a blind ACK, indicating that it has already aborted
the transaction. Similarly, if the abort message is received by a leaf cohort, the
cohort behaves as in the case of normal processing if it is in a prepared-to-commit
state or replies with a blind ACK.

Similarly, for each transaction with each that has a commit log record but
without corresponding switch and end record, the coordinator knows that all
cohorts in this transaction execution are 1PC and the transaction has not finished
the protocol before the failure. For each of these transactions, the coordinator
adds the transaction in its protocol table and sends a commit message to each
of its direct ancestors. Then, the coordinator waits for the ACKs of the direct
descendants. Once the required ACKs arrive, the coordinator writes an end log
record and forgets the transaction.

In the case of a 2PC cascaded coordinator failure, during the recovery process,
the cascaded coordinator adds to its protocol table each undecided transaction
(i.e., a transaction that has a prepared record without a corresponding final
decision record) and each decided (i.e., committed or aborted) transaction that
has not been fully acknowledged by its direct descendants prior to the failure. For
each undecided transaction, the cascaded coordinator inquires its direct ancestor
about the outcome of the transaction. As in the case of a leaf cohort failure,
the inquiry message contains the identities of all ancestors as recorded in the
prepared record. Once the cascaded coordinator receives the final decision, it
completes the protocol as in the normal processing case discussed above. For
each decided but not fully acknowledged transaction, the cascaded coordinator
re-sends decision messages to its direct descendants (according to the protocol
specification) and waits for all their ACKs before completing the protocol as
during normal processing, e.g., by writing a non-forced end log record.

4 Analytical Evaluation

In this section, we evaluate the performance of 1-2PC and compare it with the
performance of PrC and IYV. In our evaluation, we also include the presumed
abort (PrA) protocol [16] which is the other best known 2PC variant. As opposed
to PrC, PrA coordinators assume that lack of information on a transaction
indicates an aborted transaction. This eliminates the need for an abort log record
at the coordinator and the need of an ACK and force write abort decision log
records at the cohorts.



PrC PrA [IYV[1-2PC[1-2PC 1-2PC
(1PC)|(2PC) (MIX)

Log force delays 2d-1 d 1 1 d+1 37 (d+1)
Total forced log writes 2¢+14+2(2e+2041] 1 1 c+i+2 n-p+2
Message delays (Commit) 2(d-1) [ 2(d-1) | O 0 [2(d-1) 2~ (2d-1)
Message delays (Locks) 3(d-1) | 3(d-1) [d-1| d-1 [3(d-1) (24+d) = (3(d-1)
Total messages 3n 4n 2n 2n 3n  |depriz+2p1Prc+3parce
Total messages with piggybacking| 3n 3n n n 3n  [3emizt+2p1Pc+3paprc

Table 1. The cost of the protocols to commit a transaction.

PrC PrA (IYV|1-2PC| 1-2PC 1-2PC
(1PC)| (2PC) (MIX)

Log force delays 2d-2 d-1 0 0 d 27 d
Total forced log writes 3c4204+1] e+l 0 0 [2c+2i+1 2(n-p)+1
Message delays (Abort) 2(d-1) [2(d-1)] © 0 2(d-1) 2~ (2d-1)
Message delays (Locks) 3(d-1) [3(d-1)[d-1[ d-1 | 3(d-1) (24d) = 3(d-1)
Total messages 4n 3n n n 4n denriztp1Pc+4p2pPc
Total messages with piggybacking 3n 3n n n 3n 3emiztp1rc+3paprc

Table 2. The cost of the protocols to abort a transaction.

Our evaluation method is based on evaluating the log, message and time
(message delay) complexities. In the evaluation, we consider the number of co-
ordination messages and forced log writes that are due to the protocols only
(e.g., we do not consider the number of messages that are due to the operations
and their acknowledgments). The costs of the protocols in both commit and
abort cases are evaluated during normal processing.

Tables 1 and 2 compare the costs of the different protocols for the commit
case and abort case on a per transaction basis, respectively. The column titled
“1-2PC (1PC)” denotes the 1-2PC protocol when all cohorts are 1PC, whereas
the column titled “1-2PC (2PC)” denotes the 1-2PC protocol when all cohorts
are 2PC. The column titled “1-2PC (MIX)” denotes the 1-2PC protocol in the
presence of a mixture of both 1PC and 2PC cohorts. In the table, n denotes the
total number of sites participating in a transaction’s execution (excluding the
coordinator’s site), p denotes the number of 1PC cohorts (in the case of 1-2PC
protocol), ¢ denotes a cascaded coordinator, [ denotes a leaf cohort and d denotes
the depth of the transaction execution tree assuming that the root coordinator
resides at level “17.

The row labeled “Log force delays” contains the sequence of forced log
writes that are required by the different protocols up to the point that the
commit/abort decision is made. The row labeled “Message delays (Decision)”
contains the number of sequential messages up to the commit/abort point, and
the row labeled “Message delays (Locks)” contains the number of sequential
messages that are involved in order to release all the locks held by a commit-
ting/aborting transaction at the cohorts’ sites. In the row labeled “Total mes-
sages with piggybacking”, we apply piggybacking of the ACKs, which is a special
case of the lazy commit optimization to eliminate the final round of messages.

It is clear from Tables 1 and 2 that 1-2PC performs as IYV when all cohorts
are 1PC cohorts, outperforming the 2PC variants in all performance measures
including the number of log force delays to reach a decision as well as the total



number of log force writes. For the commit case, the two protocols require only
one forced log write whereas for the abort case neither 1-2PC nor IYV force
write any log records. When all cohorts are 2PC, 1-2PC performs by about d
less in the number of sequential forced log writes and ¢ less in the total forced log
writes for both the commit as well as the abort case. This makes the performance
enhancement of 1-2PC much more significant in the presence of deep execution
trees. This performance enhancement is reflected on the 1-2PC when there is
a cohorts” mix where the costs associated with log force delays, message delays
to reach a decision and message delays to commit depends on the number of
sequential 2PC cohorts as well as their positions in the execution tree.

Piggybacking can be used to eliminate the final round of messages for the
commit case in PrA, TYV and 1-2PC (1PC). That is not the case for PrC,
and 1-2PC (2PC) because a commit decision is never acknowledged in these
protocols. Similarly, this optimization can be used in the abort case with PrC
and 1-2PC (2PC) but not with PrA, TYV or 1-2PC (1PC) since a cohort in
the latter set of protocols never acknowledges an abort decision. 1-2PC (MIX)
benefits from this optimization in both commit and abort cases. This is because,
in a commit case, a 1PC leaf cohort and each cascaded coordinator with mixed
cohorts acknowledge the commit decision, whereas in an abort case, a 2PC leaf
cohort and each cascaded coordinator with mixed cohorts acknowledge the abort
decision, which can be both piggybacked.

Finally, the performance of multi-level 1-2PC can be further enhanced by
applying three optimizations: read-only, forward recovery and flatting of the
commit tree. These were not discussed in this paper due to space limitations.

5 Conclusions

Recently, there has been a re-newed interest in developing new atomic com-
mit protocols for different database environments. These environments include
gigabit-networked, mobile and real-time database systems. The aim of these ef-
forts is to develop new and optimized atomic commit protocols that meet the
special characteristics and limitations of each of these environments.

The 1-2PC protocol was proposed to achieve the performance of one-phase
commit protocols when they are applicable, and the (general) applicability of
two-phase commit protocols, otherwise. The 1-2PC protocol clearly alleviates
the applicability shortcomings of 1PC protocols in the presence of (1) deferred
consistency constraints, or (2) limited network bandwidth. At the same time,
it keeps the overall protocol overhead below that of 2PC and its well known
variants, namely presumed commit and presumed abort. For this reason, we
extended 1-2PC to the multi-level transaction execution model, the one specified
by the database standards and adopted in commercial database systems. We
also evaluated its performance and compared it to other well known commit
protocols. Our extension to 1-2PC and the results of our evaluation demonstrates
the practicality and efficiency of 1-2PC, making it a specially important choice
for Internet transactions that are hierarchical in nature.
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